

Applied Biosystems® ViiA™ 7 Real-Time PCR System

Getting Started Guides

Applied Biosystems® ViiA™ 7 Real-Time PCR System

Getting Started Guides

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Information in this document is subject to change without notice.

APPLIED BIOSYSTEMS DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TO THE FULLEST EXTENT ALLOWED BY LAW, IN NO EVENT SHALL APPLIED BIOSYSTEMS BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT APPLIED BIOSYSTEMS IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Limited Use Label License No. 358: Research Use Only

The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

NOTICE TO PURCHASER: LIMITED LICENSE

This instrument is licensed for use under patents owned by the University of Utah Research Foundation and licensed to Idaho Technology, Inc. No right is conveyed expressly by implication or by estoppel under any other patent claim.

TRADEMARKS

The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

TaqMan, Amperase, and AmpliTaq Gold are registered trademarks of Roche Molecular Systems, Inc.

RealTime StatMiner is a trademark of Integromics SL.

Twister is a trademark of Caliper Life Sciences Inc.

Microsoft, Microsoft Vista, and Internet Explorer are trademarks of Microsoft Corporation.

Adobe, Acrobat, and Reader are trademarks of Adobe Systems, Incorporated.

FireFox and Mozilla are trademarks of Mozilla Foundation

© 2011 Life Technologies Corporation. All rights reserved.

Part Number 4441434 Rev. C 12/2011

Roadmap

BOOKLET 1	Getting Started with ViiA™ 7 System Experiments
BOOKLET 2	Running Standard Curve Experiments
BOOKLET 3	Running Relative Standard Curve and Comparative \mathbf{C}_{T} Experiments
	PART I: Running Relative Standard Curve Experiments
	PART II: Running Comparative C _T Experiments
BOOKLET 4	Running Genotyping Experiments
BOOKLET 5	Running Presence/Absence Experiments
BOOKLET 6	Running Melt Curve Experiments
BOOKLET 7	ViiA [™] 7 System Experiments - Appendixes

Contents

BOOKLET 1 Getting Started with ViiA™ 7 System Experiments

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Contents

	About This Guide	5
	How to use these guides	5
	How to use these booklets as tutorials	
	How to use the guides with your own experiments	5
	Assumptions	
	How to access an example experiment	
	Data files in the Examples folder	6
	A note on system security	7
	Safety information	8
	Safety alert words	8
	Safety Data Sheets (SDSs)	8
	Safety labels on instruments	9
CHAPTER 1	General Information and Instructions	11
	Order materials for the experiment	. 12
	About ordering from the Applied Biosystems store	. 12
	Access the store from ViiA™ 7 Software	. 12
	Set up an experiment	. 13
	Define experiment properties	
	Define experiment name and type	. 13
	Select the reagent	. 14
	Define the instrument run properties	. 15
	Define targets, samples, and biological replicate groups	. 16
	Assign targets, samples, and biological replicate groups	. 18
	Alternate procedure for assigning targets, samples, and biological replicate groups	20
	Define the run method	. 21
	(Optional) Use libraries when designing your own experiments	. 23
	Prepare reactions	. 24
	Supported consumables	. 24
	Supported reagents	. 27
	Reagent detection process	. 27
	Precautions while preparing reactions	. 29
	Materials required while preparing the dilutions	. 29
	Guidelines for preparing the dilutions, reaction mix, and plate	. 30
	Seal the reaction plate	. 31
	Fill and seal the array card	. 33
	Capping and uncapping the 96-well reaction tubes and tube strips	. 36

	Start the experiment	38
	Instrument Console	38
	Load the reaction plate or array card into the instrument	41
	Enable or change the Notification Settings	42
	Run the experiment	43
	Monitor the experiment	44
	Unload the instrument	50
	Transfer experiment results	50
	Review experiment results	52
	About analysis results	
	About the Analysis Settings Library	52
	To override calibration	
	To display wells	54
	To display multiple plots	54
	To display an expanded view of a plot or wells	55
	To edit plot properties	55
	To save current settings as default	56
	To publish the analyzed data	56
	Export an experiment	57
	About exporting an experiment	57
	Export procedure	57
CHAPTER 2	Experiment Shortcuts	. 61
	Create an experiment from a template	62
	To create a template	
	To create a new experiment using a template	
	To create an experiment using a template on the ViiA™ 7 Instrument touchscreen	
	Run an experiment with QuickStart	63
	QuickStart from the ViiA™ 7 Software	
	QuickStart from the ViiA™ 7 Instrument touchscreen	64
	Import plate setup for an experiment	65
	Import sample information	
	Create a sample definition file	
	Import sample information from a sample definition file	
	Use a template to create a batch of experiments	
	Create an experiment using ReadiApp	
	Index	. 7 3

About This Guide

How to use these guides

These guides function as both a tutorial and as a guide for performing your own experiments.

Note: First-time users of the Vii A^{TM} 7 System, please read this booklet, *Getting Started with Vii* A^{TM} 7 *System Experiments* thoroughly. The booklet provides information and general instructions that are applicable to all the experiments described in this binder.

How to use these booklets as tutorials

Each booklet in this guide provides a tutorial for running an example experiment using ViiATM 7 Software and the example data provided on the installation CD. The following booklets are provided:

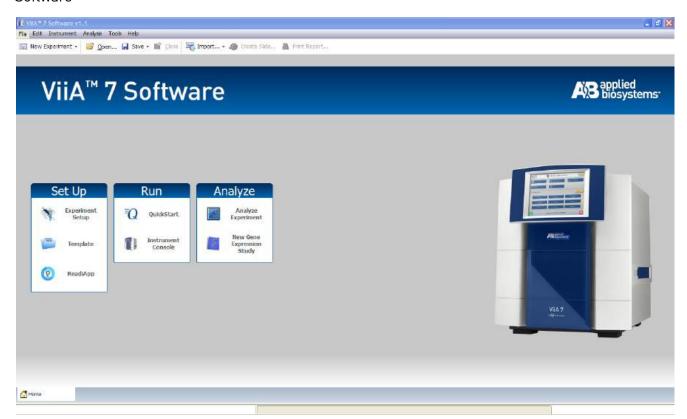
- *Getting Started with ViiA*[™] 7 *System Experiments* introductory information and experiment workflow common to all experiments.
- Running Standard Curve Experiments designing, running, and analyzing a Standard Curve experiment.
- Running Relative Standard Curve and Comparative C_T Experiments designing, running, and analyzing Relative Standard Curve and Comparative C_T experiments.

Note: This booklet also provides information on setting up, running, and analyzing a gene expression study of two Comparative C_T experiments.

- Running Genotyping Experiments designing, running, and analyzing a Genotyping experiment.
- Running Presence/Absence Experiments designing, running, and analyzing a Presence/Absence experiment.
- Running Melt Curve Experiments designing, running, and analyzing a Melt Curve experiment.
- *ViiA*™ *7 System Experiments Appendixes* common information such as ordering information, additional documentation, and glossary.

Note: In all booklets, the term "experiment" refers to the entire process of performing an experiment, including setup, run, and analysis.

How to use the guides with your own experiments


Each booklet contains instructions specific to an example experiment provided on the installation CD. However, you can use the booklets as guides for your own experiments; tips for running your own experiments are provided at various points in each booklet.

Assumptions

This guide assumes that you have access to the example experiments provided with the software.

How to access an example experiment

Start the ViiA™ 7 Software Double-click (ViiA™ 7 Software shortcut) to access the Home screen, shown below.

Open an example experiment

From the Home screen, click **Open**, to navigate to the **experiments** folder (default): <*drive>*:\Applied Biosystems\ViiA7 Software v1.1\experiments\examples, and open the example experiment file.

Data files in the Examples folder

- ViiA7 96-Well Comparative Ct Example.eds
- ViiA7 96-Well Multiplex Example.eds
- ViiA7 96-Well Presence-Absence Example.eds
- ViiA7 96-Well SNP Genotyping Example.eds
- ViiA7 96-Well Standard Curve Example.eds
- ViiA7 96-Well SYBR Green PCR w Melt Example.eds
- ViiA796-Well Relative Standard Curve Example 2.eds

- ViiA796-Well Relative Standard Curve Example.eds
- ViiA7 384-Well Comparative Ct Example.eds
- ViiA7_384-Well_Comparative_Ct_Example_1.eds
- ViiA7_384-Well_Comparative_Ct_Example_2.eds
- ViiA7_384-Well_Comparative_Ct_Study_Example.edm
- ViiA7_384-Well_Comparative_Ct_with_Bioreplicates_Study_Example.edm
- ViiA7_384-Well_Melt_ Example.eds
- ViiA7_384-Well_Multiplex_Example.eds
- ViiA7_384-Well_Presence-Absence_Example.eds
- ViiA7_384-Well_Relative_Standard_Curve_Example.eds
- ViiA7_384-Well_Relative_Standard_Curve_Example_2.eds
- ViiA7_384-Well_SNP_Genotyping_Example.eds
- ViiA7_384-Well_Standard_Curve_Example.eds
- ViiA7_384-Well_SYBR_Green_Melt_Example.eds
- ViiA7_384-Well_SYBR_Green_PCR_with_Melt_Example.eds
- ViiA7_TaqMan_Array_Comparative_Ct_Example.eds
- ViiA7_TaqMan_Array_RNaseP_Example.eds
- ViiA7_TaqMan_Array_Standard_Curve_Example.eds

In addition to the above, the experiments folder also contains the following user sample files:

- BarCode_Template 384Wb.txt
- ViiA 7 Custom Sample Properties_example.xls

A note on system security

The Security, Auditing, and e-Signature (SAE) feature in ViiATM 7 Software enables role-based access control to enforce data integrity and authentication of users logging into the system, to strengthen system security. The feature tracks actions performed by users on experiments, templates, and studies, and it tracks changes to the SAE settings. You can enable and later disable this feature to accommodate your security needs.

To enable or disable the feature, from the toolbar select **Tools** ▶ **Security** ▶ **Settings**.

For more information on the SAE feature, please refer to *Applied Biosystems ViiA*TM *7 Real-Time PCR System User Guide* (PN 4442661).

Note: If you have not purchased the SAE module, the security feature is disabled for experiments, templates, and studies.

Safety information

Note: For general safety information, see this Preface and Appendix B, Safety. When a hazard symbol and hazard type appear by a chemical name or instrument hazard, see the "Safety" Appendix for the complete alert on the chemical or instrument.

Safety alert words

Four safety alert words appear in Applied Biosystems user documentation at points in the document where you need to be aware of relevant hazards. Each alert word— IMPORTANT, CAUTION, WARNING, DANGER—implies a particular level of observation or action, as defined below:

IMPORTANT! – Indicates information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

CAUTION! – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

DANGER! – Indicates an imminently hazardous situation that, if not avoided, \perp will result in death or serious injury. This signal word is to be limited to the most extreme situations.

WARNING! – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

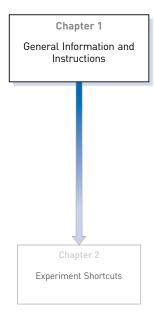
Except for IMPORTANTs, each safety alert word in an Applied Biosystems document appears with an open triangle figure that contains a hazard symbol. These hazard symbols are identical to the hazard symbols that are affixed to Applied Biosystems instruments (see "Safety symbols" in Appendix B, Safety).

Safety Data Sheets (SDSs)

The SDSs for any chemicals supplied by Applied Biosystems or Ambion are available to you free 24 hours a day. For instructions on obtaining SDSs, see "SDSs" in Appendix B, Safety.

IMPORTANT! For the SDSs of chemicals not distributed by Applied Biosystems, Ambion or Invitrogen contact the chemical manufacturer.

Safety labels on instruments


The following CAUTION, WARNING, and DANGER statements may be displayed on Applied Biosystems instruments in combination with the safety symbols described in the preceding section.

Hazard symbol	English	Français
<u></u>	CAUTION! Hazardous chemicals. Read the Safety Data Sheets (SDSs) before handling.	ATTENTION! Produits chimiques dangereux. Lire les fiches techniques de sûreté de matériels avant toute manipulation de produits.
	CAUTION! Hazardous waste. Refer to SSDS(s) and local regulations for handling and disposal.	ATTENTION! Déchets dangereux. Lire les fiches techniques de sûreté de matériels et la régulation locale associées à la manipulation et l'élimination des déchets.
	WARNING! Hot lamp.	AVERTISSEMENT! Lampe brûlante.
<u>/</u>)))\	WARNING! Hot. Do not remove lamp until 15 min after disconnecting supply.	AVERTISSEMENT! Lampe brûlante, après avoir déconnecté le câble d'alimentation de l'appareil, attendre environ 15 minutes avant d'effectuer un remplacement de la lampe.
	WARNING! Hot. Replace lamp with an Applied Biosystems lamp.	AVERTISSEMENT! Composants brûlants. Remplacer la lampe par une lampe Applied Biosystems.
CAUTION! Hot surface.		ATTENTION! Surface brûlante.
\wedge	DANGER! High voltage.	DANGER! Haute tension.
<u> </u>	WARNING! To reduce the chance of electrical shock, do not remove covers that require tool access. No user-serviceable parts are inside. Refer servicing to Applied Biosystems qualified service personnel.	AVERTISSEMENT! Pour éviter les risques d'électrocution, ne pas retirer les capots dont l'ouverture nécessite l'utilisation d'outils. L'instrument ne contient aucune pièce réparable par l'utilisateur. Toute intervention doit être effectuée par le personnel de service qualifié venant de chez Applied Biosystems.
	CAUTION! Moving parts. Crush/pinch hazard.	ATTENTION! Pièces en mouvement, risque de pincement et/ou d'écrasement.

Safety information

General Information and Instructions

This chapter covers:

Order materials for the experiment	12
Set up an experiment	13
Prepare reactions	24
Start the experiment	38
Review experiment results	52
Export an experiment.	57

Note: For more information about any of the topics discussed in this guide, access the Help from within Applied Biosystems ViiA[™] 7 Software by pressing F1, clicking in the toolbar, or selecting **Help ▶ ViiA[™] 7 Software Help**.

Order materials for the experiment

There are two ways to order materials required for the experiment:

- Order directly from the Applied Biosystems store.
- Access the Applied Biosystems store from the ViiA[™] 7 Software.

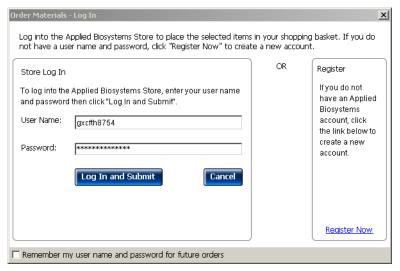
About ordering from the Applied Biosystems store

Note: Product availability and pricing may vary according to your region or country. Online ordering through the Applied Biosystems Store is not available in all countries. Contact your local Applied Biosystems representative for help.

Note: See *Applied Biosystems ViiA*TM 7 *Real-Time System User Guide* (PN 4442661) for a complete list of instrument parts and accessories, consumables, and reagents or Booklet 7, ViiATM 7 *System Experiments - Appendixes* of this binder for a complete list of compatible consumables and reagents.

Applied Biosystems recommends the following browsers and Adobe[®] Acrobat[®] Reader[®] versions to use the Applied Biosystems web site:

Note: Confirm that your computer has an Internet connection.


Operating System	Mozilla [®] Firefox [®]	Microsoft [®] Internet Explorer [®]	Adobe [®] Reader [®]
Windows [®] XP/	Firefox [®] v2.0 or	Internet Explorer [®]	Adobe [®] Reader [®]
Windows [®] 7	later	v6.0 or later	v4.0 or later

Note: Make sure that cookies and JavaScript are turned on for the web site to function correctly.

Access the store from ViiA™ 7 Software

- **1.** To find your assay on the Applied Biosystems Store, complete the Find Assay pane in the ViiA[™] 7 Software:
 - a. Enter a gene name in the Enter Gene Name field, then click **Find Assay**.
 - **b.** In the Find Assay Results dialog box, select your assay.
 - c. Click Apply Assay Selection. The selected assay gets added to your shopping list.
- 2. Check that the Experiment Shopping List contains the desired materials, other than the assay selected in the previous step, and that the quantities are correct, then click **Order Materials in List**.

3. In the Order Materials - Login dialog box, enter your user name and password for the Applied Biosystems Online Store, then click **Log In and Submit**.

Note: If you do not have an account with the Applied Biosystems Online Store, click **Register Now** to create an account.

4. When you are connected to the Applied Biosystems Store, follow the prompts to complete your order.

Set up an experiment

Define experiment properties

All experiments require the same general setup tasks; individual booklets supply specific parameters. The following procedures outline general steps to take to set up an experiment.

Access ViiA[™] 7 Software and click the Experiment Setup icon. Click **Experiment Properties** to access the Experiment Properties screen.

Define experiment name and type

- 1. Enter a unique experiment name in the Experiment Name field. The default is a date and time stamp, which you can change. For example, 2010-04-12 173730.
 - Enter a name that is descriptive and easy to remember. You can enter up to 100 characters.
 - You can only use the alpha-numeric, period (.), hyphen (-), underscore (_)
 and spaces () characters.

Note: Make sure each experiment name is unique. If you have named two different experiments with the same name, you cannot run them on the same instrument. You will receive the following error message:

If you do not want to delete the existing experiment, rename the duplicate experiment and then proceed to the run.

- **2.** (*Optional*) Enter or scan the barcode on the reaction plate. You can enter up to 100 characters in the Barcode field.
- **3.** (*Optional*) Enter a user name to identify the owner of the experiment. You can enter up to 100 characters in the User Name field.
- **4.** (*Optional*) Enter comments to describe the experiment.
- 5. Select the block type you are using to run the experiment
 - 384-Well Block
 - Array Card Block
 - 96-Well Block (0.2mL)
 - Fast 96-Well Block (0.1mL)
- **6.** Select the experiment type:
 - Standard Curve
 - Relative Standard Curve
 - Comparative $C_T (\Delta \Delta C_T)$
 - Melt Curve
 - Genotyping
 - Presence/Absence

Select the reagent

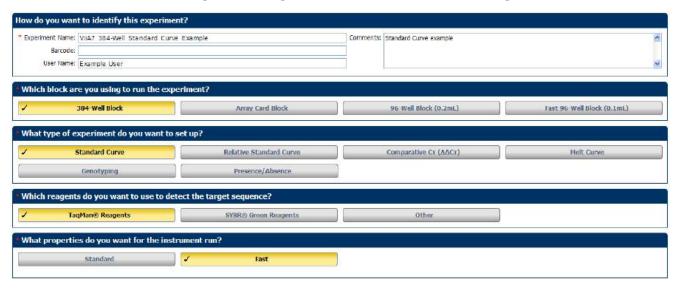
Select the reagent you are using to detect the target sequence:

- TaqMan® Reagents
- SYBR® Green Reagents
- Other

Note: If you select SYBR® Green as the reagent, then you have the option of including a melt curve for that experiment.

Define the instrument run properties

- 1. Select the ramp speed for the experiment:
 - Standard
 - Fast
- **2.** For Genotyping and Presence/Absence experiments, select the options for the data collection to include in the experiment run:
 - Pre-PCR Read to include data before amplification occurs. Use the data collected during pre-PCR read to normalize florescence data collected during post-PCR read.
 - Amplification to include real-time data.
 - Post-PCR Read to include data after amplification has taken place.
- **3.** (*Optional*) For real-time data collection, you can change the default analysis settings in the Preferences for the following:
 - Automatic analysis
 - Automatic save
 - Baseline settings


Go to **Tools ▶ Preferences**. Click the Experiment tab. Select the Auto Analysis and Auto Save check boxes for the **ViiA**TM **7 Software** to automatically analyze and save experiment results. You can also edit the following default baseline settings:

Field	Entry
Start Cycle Number	3 (default)
End Cycle Number	15 (default)

Note: By default, the Auto Analysis and Auto Save check boxes are selected.

- 4. For the Melt Curve experiment, select the **Include PCR** check box, to include PCR.
- 5. Save the experiment. The default file name (.eds extension) is the experiment name that you entered when you set up the experiment and saved it for the first time. Changes to the experiment name after the first save do not update the file name. To change the file name, select File ▶ Save As.

Define targets, samples, and biological replicate groups

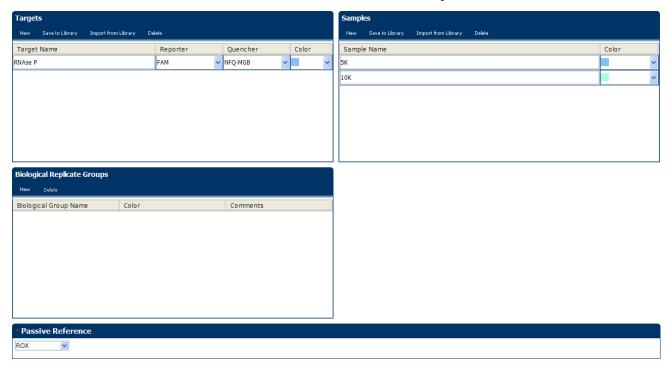
Use the Define screen to define targets, samples and biological replicates for your experiment. For Genotyping experiments, use this screen to specify the number of SNP assays to include in the experiment.

Note: You can start a run without these definitions, but there will be no real-time data in the amplification plots (the amplification plots can be seen only after you have set up the plate).

- 1. Click **Define** to access the Define screen.
- Define targets.
 - **a.** Click **New** to add targets and define them.
 - **b.** In the target table, click a cell in the Target Name column for the target, then enter your target name. The default name is Target 1.
 - **c.** Select the **Reporter** and **Quencher** from the respective drop-down menu.

Note: The default reporter and quencher dyes used depend on the reagent selected during experiment setup. For example, if TaqMan[®] is the selected reagent, the default reporter FAM and default quencher is **NFQ-MGB**.

- **d.** Select the target **Color** from the drop-down menu.
- **e.** (*Optional*) Click **Save to Library** to save the newly added or existing edited targets to the target library.


Note: Use the targets from the Target Library to avoid re-entering the information. See "(Optional) Use libraries when designing your own experiments" on page 23 for information on target libraries.

f. Click **Import from Library** to add targets from the target library.

- **3.** Define samples.
 - a. Click New to add samples and name them.
 - **b.** In the samples table, click a cell in the Sample Name column for the sample to define and enter your sample name. The default sample name is Sample 1.
 - **c.** Select the sample **Color** from the drop-down menu.
 - **d.** (*Optional*) Click **Save to Library** to save the newly added or existing edited samples to the sample library.

Note: Use the samples from the Sample Library to avoid re-entering the information. See "(Optional) Use libraries when designing your own experiments" on page 23 for information on sample libraries.

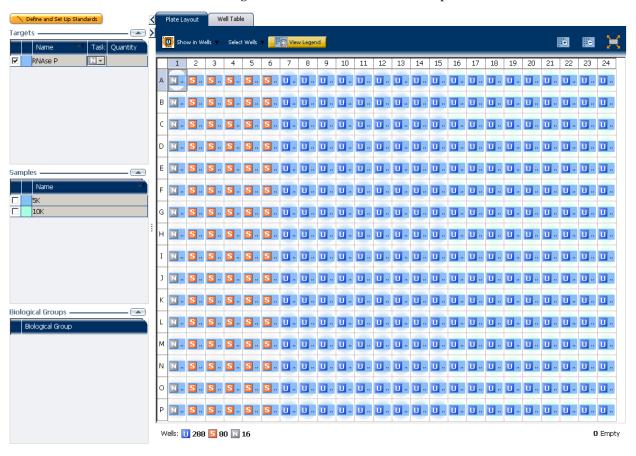
- **e.** Click **Import from Library** to add samples from the sample library.
- **4.** Define biological replicates.
 - **a.** In the Define Biological Replicates Groups table, click **New** to add biological replicate group and name them. You can enter up to 100 characters in this field.
 - **b.** Select the **Color** from the drop-down menu.
 - **c.** Click in the **Comments** column to add comments for that biological replicate group.
- **5.** Select the Passive Reference from the drop-down menu. The Define screen for a Standard Curve experiment looks like this:

Assign targets, samples, and biological replicate groups

Use the Assign screen to assign targets, samples, and biological replicate groups to wells in the reaction plate. For Genotyping experiments, use this screen to assign SNP assays.

Note: You can start a run without these assignments, but there will be no real-time data in the amplification plots (the amplification plots can be seen only after you have set up the plate).

- 1. Click **Assign** to access the Assign screen.
- 2. Assign targets.
 - a. Select wells using the plate layout or the well table on the Assign screen.
 - **b.** Select a target and assign its task, in the plate, from the drop-down menu. Depending on the experiment type, options are:

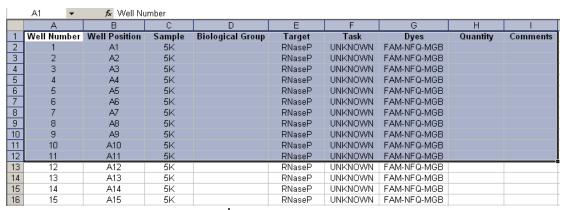

Experiment type	Legend	Tasks
Standard Curve	U	Unknown
	S	Standard
	N	Negative Control
Relative Standard Curve	U	Unknown
	S	Standard
	N	Negative Control
Comparative CT	U	Unknown
	N	Negative Control
Genotyping	U	Unknown
	1/1	Positive Control Allele 1/ Allele 1
	2/2	Positive Control Allele 2/ Allele 2
	1/2	Positive Control Allele 1/ Allele 2
	N	Negative Control
Presence/ Absence	U	Unknown
	1	Internal Positive Control
	N	Negative Control
Melt Curve	U	Unknown
	N	Negative Control

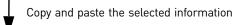
- 3. Assign Samples.
 - a. Select wells using the plate layout or the well table on the Assign screen.
 - b. Select the check box next to the sample to assign to the selected wells.Note: You can assign only one sample to a well. If the selected wells contain

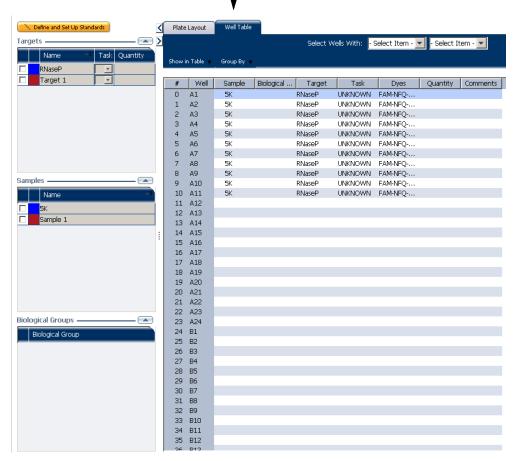
mixed assignments (indicated by a ___), remove existing sample assignments before you make the new sample assignment.

- 4. Assign Biological Replicate Groups.
 - a. Select wells using the plate layout or the well table on the Assign screen.
 - **b.** Select the check box next to the biological replicate group to assign to the selected wells.

The Assign screen for a Standard Curve experiment looks like this:




Alternate procedure for assigning targets, samples, and biological replicate groups


As shown below, you can also paste assignment information from an *.xls file into the plate layout of the Vii A^{TM} 7 Software for wells with single targets.

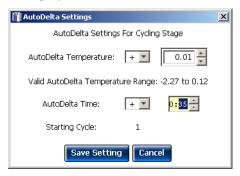
Note: You must select the header, and the Well Number and Well Position columns while copying information from the *.xls file.

Note: Any of the columns not copied are treated as NULL values for those columns.

Define the run method

Use the Run Method screen to set up the run method for your own experiments in the $ViiA^{TM}$ 7 Software.

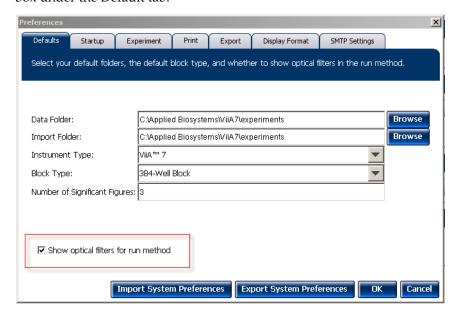
1. Click **Run Method** to access the Run Method screen.


Note: You can save multiple run methods to the Run Method Library for later use. See "(Optional) Use libraries when designing your own experiments" on page 23 for information on run method libraries.

- 2. Enter a number from 1 to 20 for the reaction volume per well. The ViiA[™] 7 Instrument supports the following maximum reaction volumes for the consumables listed below:
 - MicroAmp® Optical 384-Well Reaction Plate $30\mu L$
 - Applied Biosystems Array Card 1µL
 - MicroAmp[®] Optical 96-Well Reaction Plate (0.2mL)- 200μL
 - MicroAmp[®] Optical 96-Well Reaction Plate (0.1mL)- 100μL
 - MicroAmp[®] Optical 8-Tube Strip with cap (0.2μL)- 200μL
 - MicroAmp[®] Fast 8-Tube Strip with cap(0.1μL)- 100μL
 - MicroAmp[®] Optical Reaction Tube without cap (0.2μL)- 200μL
 - MicroAmp[®] Fast Reaction Tube without cap (0.1μL)- 100μL
- 3. In the Graphical View tab, review and, if necessary, edit the run method.
 - Make sure that the thermal profile is appropriate for your reagents.
 - Edit the default run method or replace it with one from the run method library included in the ViiATM 7 Software.
 - Enable data collection by clicking 📸.

Note: Enabling data collection is especially useful when you later need to analyze data collected in real-time during the various stages.

• Edit the ramp rate. You can increase or decrease the ramp rate for a stage. **Note:** Ramp rates are decimal numbers from 0.015—3.4.


- Edit the PCR Stage.
- Change the Number of Cycles for the PCR stage.
- Select the Enable AutoDelta check box, to increase or decrease the temperature and/or hold time for each subsequent cycle or to change the Starting Cycle for AutoDelta. Enabling AutoDelta displays the ▲ icon. Click the AutoDelta Off ▲ icon to change the AutoDelta settings for the cycling stage in the AutoDelta Settings dialog box. Then, click Save Setting to display the AutoDelta On ▲ icon.

Note: If you selected SYBR[®] Green as the reagent, the Melt Curve stage automatically appears in the Run Method screen. If you delete the Melt Curve Stage section from the protocol, then the melt curve is active in the Add Stage drop-down menu.

4. Complete the tasks on the Optical Filters tab:

By default, the Optical Filters tab is not visible. To show the Optical Filters tab, go to **Tools** • **Preferences**, and select the Show optical filters for run method check box under the Default tab.

- To add a new filter set to the filter set library, click Save.
- To load a saved filter set, click Load.
- To go back to the original filter set combinations, click Revert to Defaults.

Note: Select the filter set that matches the profile of the dye you have added to the plate. Refer to the *Applied Biosystems ViiA*TM 7 *Real-Time PCR System User Guide* (PN 4442661) for information on the emission spectrum for each dye, and the filter at which each dye is read.

(Optional) Use libraries when designing your own experiments

The ViiATM 7 Software allows you to save information to libraries, so you can easily use the information again when setting up an experiment. The libraries include:

- Targets library
- Samples library
- SNP Assay library (only available for Genotyping experiments)
- Run Method library

Target, Sample, and SNP Assay libraries

You can access the Targets, Samples, and SNP Assay libraries from the Tools menu to add, edit, delete, and import or export items. You can also access a library by clicking **Import from Library** in the Define screen when you are setting up an experiment.

Run Method library

You can use the Run Method library from the Run Method screen to:

- Save a new run method for later use.
- To select an existing run method for an experiment.

To add a run method to the Run Method Library:

- Click Save Run Method in the toolbar of the Graphical View tab on the Run Method screen.
- **2.** Enter a name and description (*optional*) for the run method, then click **Save**.

To select a run method from the Run Method Library

Click **Open Run Method** on the Run Method screen, and select one from the saved run methods.

Prepare reactions

Supported consumables

The $ViiA^{TM}$ 7 Instrument is optimized for Applied Biosystems consumables. These can be ordered from the Applied Biosystems website. Use the consumables appropriate for the sample block of your instrument.

Sample block	Consumable		Maximum reaction volume (µL) supported	Recommended reaction volume (µL)
384-Well Plate	Notched corner	MicroAmp® Optical 384-Well Reaction Plate MicroAmp® Optical Adhesive Film	30	5 - 20
Array Card	A1	Applied Biosystems Array Card	1	1

Sample block	Consumable	Maximum reaction volume (µL) supported	Recommended reaction volume (µL)
96-Well Plate (0.2mL)	 MicroAmp® Optica Well Reaction Plat MicroAmp® Optica Adhesive Film MicroAmp® 96-We Support Base (only used during sample preparation) ViiA™ 7 System 96-Plate Adaptor 	ell y le	10-100
Fast 96- Well Plate (0.1mL)	 MicroAmp® Fast Open Servell Reaction Feet MicroAmp® Optical Adhesive Film MicroAmp® 96-West Support Base (only used during sample preparation) ViiA™ 7 System Fast Open Support Base (only used MicroAmp® 96-West Support Base (only used MicroAmp	Plate al ell y le st 96-	10-30

Sample block	Consumable		Maximum reaction volume (µL) supported	Recommended reaction volume (µL)
96-Well Plate (0.2µL) and Fast 96-Well plate (0.1µL)		 MicroAmp® Optical 8-Cap Strip MicroAmp® Optical 8-Tube Strip (0.2µL)/MicroAmp® Fast 8-Tube Strip (0.1µL) MicroAmp® 96-Well Tray/ Retainer Set (Blue) (0.2µL)/MicroAmp® 96-Well Tray (Black) (0.1µL) MicroAmp® 96-Well Support Base (only used during sample preparation) ViiA™ 7 System 96-Well Tube Adaptor/ ViiA™ 7 System Fast 96-Well Tube Adaptor 	 100 for Fast 96-well plate 200 for 96-well plate 	10-30 for Fast 96-well plate 10-100 for 96-well plate
96-Well Plate (0.2µL) and Fast 96-Well plate (0.1µL)		 MicroAmp® Optical Tube without cap (0.2µL)/ MicroAmp® Fast Reaction Tube without Cap (0.1µL) MicroAmp® Optical 8-Cap Strip MicroAmp® 96-Well Support Base (only used during sample preparation) MicroAmp® 96-Well Tray/ Retainer Set (Blue) (0.2µL)/ MicroAmp® 96-Well Tray (Black) (0.1µL) ViiA™ 7 System 96-Well Tube Adaptor/ ViiA™ 7 System Fast 96-Well Tube Adaptor 	100 for Fast 96-well plate 200 for 96-well plate	10-30 for Fast 96-well plate 10-100 for 96-well plate

 $\textbf{WARNING!} \ \ \text{Make sure that you use the flat caps for 0.2} \\ \mu L \ \text{tubes and 0.1} \\ \mu L \ \text{tubes. Use of rounded caps damages}$ the heated cover.

Supported reagents

Applied Biosystems supports the reagents listed below for experiments performed on the Vii A^{TM} 7 System.

Experiment	Reagent
Standard Curve	 Applied Biosystems TaqMan[®] Reagents Applied Biosystems SYBR[®] Green reagents Other reagents
Relative Standard Curve	 Applied Biosystems TaqMan[®] Reagents Applied Biosystems SYBR[®] Green reagents Other reagents
Comparative C_T ($\Delta\Delta C_T$)	 Applied Biosystems TaqMan[®] Reagents Applied Biosystems SYBR[®] Green reagents Other reagents
Melt Curve	Applied Biosystems SYBR® Green reagents Other reagents
Genotyping	Applied Biosystems TaqMan® Reagents Other reagents
Presence/Absence	Applied Biosystems TaqMan [®] Reagents Other reagents

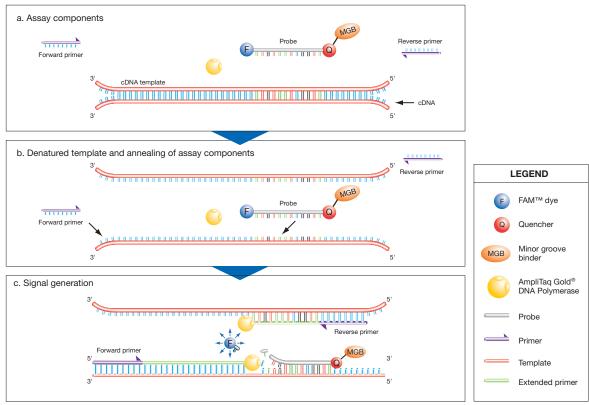
Note: Fast Universal Master Mix is not recommended to be used with the 96-well (0.2 μ L) reaction plates or reaction tubes and tube strips sealed with caps.

Reagent detection process

Applied Biosystems TagMan® Reagents Description

TaqMan[®] reagents use a fluorogenic probe to enable detection of a specific PCR product as it accumulates during PCR cycles.

Advantages


- Increased signal specificity with the addition of a fluorogenic probe.
- Multiplex capability.
- Optional preformulated assays, optimized to run under universal thermal cycling conditions, are available.
- Can be used for either 1- or 2-step RT-PCR.

Limitations

Require synthesis of a unique fluorogenic probe.

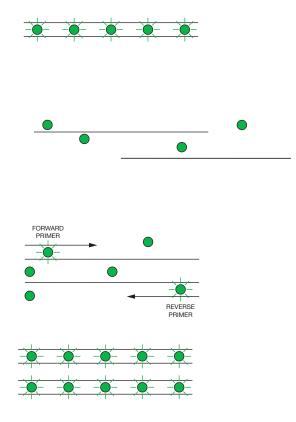
TagMan® Reagents detection process

PCR and detection of cDNA

Applied Biosystems SYBR® Green reagents

Description

SYBR Green reagents use SYBR® Green I dye, a double-stranded DNA binding dye, to detect PCR products as they accumulate during PCR cycles.


Advantages

- Economical (no probe needed).
- Allow for melt curve analysis to measure the Tm of all PCR products.
- Can be used for either 1- or 2-step RT-PCR.

Limitations

Bind nonspecifically to all double-stranded DNA sequences. To avoid erroneous information signals, check for nonspecific product formation using melt curve or gel analysis.

SYBR® Green detection process

Step 1: Reaction setup

The SYBR® Green I dye fluoresces when bound to double-stranded DNA.

Step 2: Denaturation

When the DNA is denatured into single-stranded DNA, the SYBR® Green I dye is released and the fluorescence is drastically reduced.

Step 3: Polymerization

During extension, primers anneal and PCR product is generated.

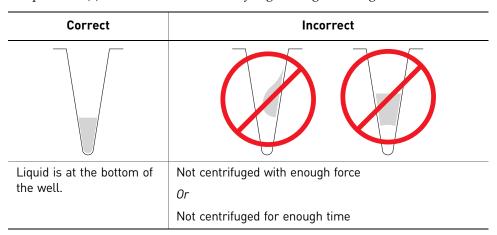
Step 4: Polymerization completed

SYBR[®] Green I dye binds to the double-stranded product, resulting in a net increase in fluorescence detected by the instrument.

Precautions while preparing reactions

- Make sure that you do not prepare the reactions on a wet table. Wet surfaces lead to contamination of your reactions.
- Wear appropriate protective eyewear, clothing, and powder-free gloves.
- Make sure that you use the appropriate consumables. The quality of pipettors and tips and the care used in measuring and mixing dilutions affect data accuracy.
- Make sure that you perform dilutions exactly as instructed. Mistakes or inaccuracies in making the dilutions directly affect the quality of results.
- Use a permanent marker or pen to mark a tube and the side of a plate or array card. Do not use fluorescent markers.
- Make sure that the arrangement of the PCR reactions matches the plate layout displayed in the ViiA™ 7 Software.

Materials required while preparing the dilutions


- DI water or DEPC water
- Microcentrifuge tubes
- Pipettors

1

- Pipette tips
- Vortex mixer
- Centrifuge
- Sample stock
- Standard stock
- Reaction mix components
- Plate or array card

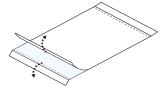
Guidelines for preparing the dilutions, reaction mix, and plate

- Include excess volume in your calculations to provide excess volume for the loss that occurs during reagent transfers.
- Use TE buffer or water to dilute the standards and samples.
- Prepare the reagents according to the manufacturer's instructions.
- Keep the dilutions and assay mix protected from light, in the freezer, until you are ready to use it. Excessive exposure to light may affect the fluorescent probes or dyes.
- Prior to use:
 - Mix the master mix thoroughly by swirling the bottle.
 - Resuspend the assay mix by vortexing, then centrifuge the tube briefly.
 - Thaw any frozen samples by placing them on ice. When thawed, resuspend the samples by vortexing, then centrifuge the tubes briefly
- Do not allow the bottom of the reaction plate to become dirty. Fluids and other
 contaminants that adhere to the bottom of the reaction plate can contaminate the
 sample block(s) and cause an abnormally high background signal.

- For Genotyping experiments, prepare the reactions for each SNP separately.
- Place the reaction plate or array card at 4 °C and in the dark until you are ready to load it into the instrument

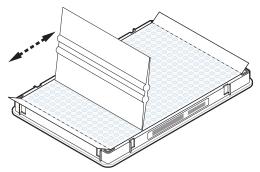
Seal the reaction plate

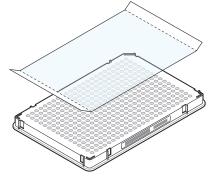
If you use optical adhesive film to seal your reaction plates, seal each reaction plate as follows:


Note: The sealing instructions are applicable to 384-well and 96-well reaction plates.

1. Load the reaction plate using the plate layout described in "Assign targets, samples, and biological replicate groups" on page 18.

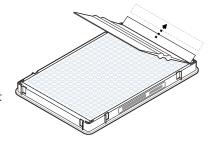
Note: For 96-well reaction plates, place the reaction plate onto the center of the 96-well base, then perform this step. Be sure that the reaction plate is flush with the top surface of the 96-well base.


Note: You can also use the MicroAmp[®] Optical 8-Cap Strip to seal the 96-well reaction plates.

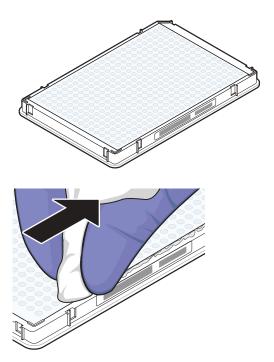

- **2.** Remove a single optical adhesive film (film) from the box. Bend both end-tabs upward. Hold the film backing side up.
- **3.** In one swift movement, peel back the white protective backing from the center sealing surface. Do not touch the center sealing surface.

IMPORTANT! Improper peeling of the optical adhesive film may result in haziness, but it will not affect results. Haziness disappears when the film comes into contact with the heated cover in the instrument.

- **4.** Holding the film by the end-tabs, lower the film onto the reaction plate (adhesive side facing the reaction plate). Make sure that the film completely covers all wells of the reaction plate.
- Applying firm pressure, move the applicator slowly across the film, horizontally and vertically, to ensure good contact between the film and the entire surface of the reaction plate.



6. Using the applicator to hold the edge of the film in place, grasp one end of the end-tab and pull up and away sharply. Repeat for the other end-tab.


Note: Ensure clean removal of both end-tabs from the dotted line. Improper peeling of the end-tab can cause sticking of plate on the heated cover assembly.

7. To ensure a tight, evaporation-free seal, repeat step 5. Applying firm pressure, run the edge of the applicator along all four sides of the outside border of the film.

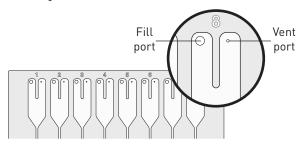
Note: Optical adhesive films do not adhere on contact. The films require the application of pressure to ensure a tight, evaporation-free seal.

8. Inspect the reaction plate to be sure that all wells are sealed. You should see an imprint of all wells on the surface of the film. Check for the perforated tab to be completely torn off to avoid plates from sticking to the instrument after a run.

IMPORTANT! Remove all excess adhesive from the perimeter of the optical adhesive cover. When the film is applied, the glue from the optical adhesive cover can adhere to the edges of the plate. If the excess glue is not removed, the plate may adhere to the gripper of the Twister[®] II Robot or to the sample block of the $ViiA^{TM}$ 7 Instrument.

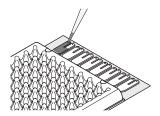
Fill and seal the array card

Fill and spin the array card

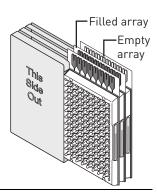

IMPORTANT! Wear powder-free gloves while preparing the Arrays.

- 1. Remove an array card from its box and place it on a clean, dry surface.
- **2.** Using a permanent marker, mark the side of the empty array cards.
- **3.** Transfer the experiment-related chemistries and solutions into the port of the array card.

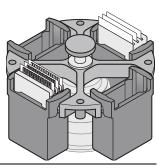
For each transfer:


- **a.** Place the array card on a lab bench, with the foil side down.
- **b.** Load $100 \mu L$ of fluid into a pipette.
- **c.** Hold the pipette in an angled position (~45 degrees) and place the tip into the fill port. There is a fill port on the left arm of each fill reservoir it is the larger of the two holes.

Do not allow the tip to contact and possibly damage the coated foil beneath the fill port.



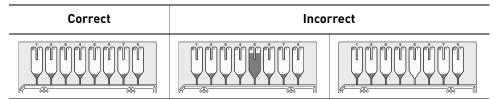
d. Dispense the fluid so that it sweeps in and around the fill reservoir toward the vent port. Pipette fluid into the fill reservoir, but **do not** go past the first stop of pipettor plunger when pipetting the reagents into the array card, or you may blow the solution out of the port.


IMPORTANT! Do not allow the tip to contact and possibly damage the coated foil beneath the fill port.

4. Place the filled array card(s) into a centrifuge array card carrier clip and place empty array card(s) in the remaining slots. Make sure that the labels on the buckets and clips face the same way.

IMPORTANT! Make sure to balance the loads in opposite buckets in the centrifuge.

5. Place the filled carrier clips into the centrifuge buckets. Make sure that the array-card fill reservoirs and bucket and clip labels face outward when loaded into the centrifuge. Balance the loads in opposite buckets.

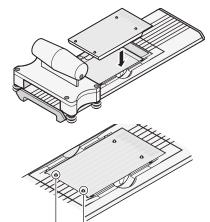


IMPORTANT! You must run the centrifuge with all four buckets in place and each of the two carriers filled with the array card. Place empty array cards (4-pack PN 4334812 and 1-pack PN 4351471) into unfilled slots.

- **6.** Close the centrifuge cover, then spin the array card(s) for 1 minute at 1200 rpm.
- **7.** When the run is finished, stop the centrifuge, then spin the array card(s) again for 1 minute at 1200 rpm.

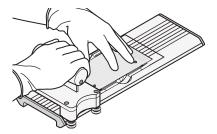
IMPORTANT! Do not try to save time by doing one spin for 2 minutes. The two sets of ramps are important for a good fill into the array card.

8. When the second run is finished, open the centrifuge and check that the fluid levels in the reservoirs of each array card have decreased by the same amount. Also, check for the formation of bubbles in all wells and note possible problems.



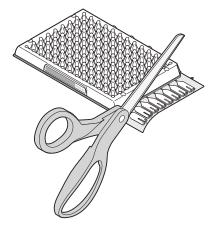
9. If necessary, centrifuge the array card(s) for an additional minute to fill any unfilled wells. Do not exceed three 1-minute runs or centrifuge the array card for longer than 1 minute at a time.

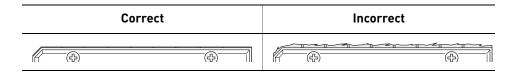
Note: Visit http://www2.appliedbiosystems.com/lib/multimedia/taqman_tlda/tlda_1.cfm to view an online video of loading an array card.


Seal the array card(s)

- 1. With the carriage (roller assembly) of the TaqMan[®] Array Micro Fluidic Card Sealer in the Start position, place a filled array card into the fixture with the foil side up so that the fill reservoirs are the farthest away from the carriage.
- **2.** Press down on all four corners of the array card to ensure that it is fully seated within the fixture.

Alignment pins


3. Use the two alignment pins in the fixture to position the array card correctly.

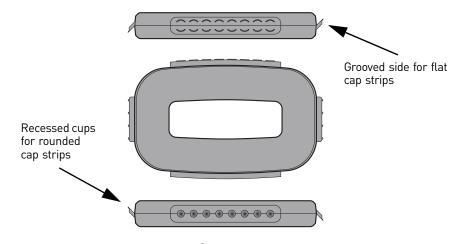

4. Seal the array card by running the carriage slowly over it, in one direction only. Do not apply downward force on the carriage as you move it forward over the card.

5. Remove the sealed array card from the fixture and trim the fill reservoirs from the array card assembly using scissors. Trim the foil array card so that the edge is even with the plastic carrier.

IMPORTANT! Completely remove the fill reservoirs from the array card so that the edge is free of residual plastic. The plastic from the fill reservoirs that extends beyond the edge of the card can prevent the card from seating properly on the sample block and affect amplification.

IMPORTANT! As you seal the remaining filled array cards, store them in a dark place until you are ready to use them. The fluorescent dyes in the array card are photosensitive. Prolonged exposure to light can diminish the fluorescence of the dye.

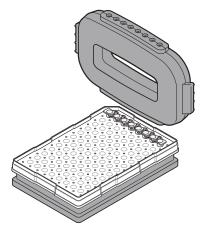
Capping and uncapping the 96-well reaction tubes and tube strips


Note: Make sure that you secure the caps on the tubes and tube-strips tightly to avoid sample evaporation.

If you use the 96-well MicroAmp[®] Optical 8-Tube Strips or MicroAmp[®] Optical Tubes without Cap, use the MicroAmp[®] Cap Installing Tool (PN 4330015) and follow the instructions below for:

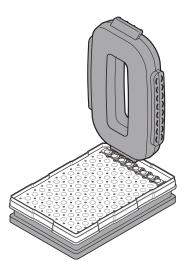
- Applying the MicroAmp® Optical 8-Cap Strip or MicroAmp® Optical Tubes without Cap to the tubes
- Removing a cap string from a plate

Required materials:


- MicroAmp® Cap Installing Tool
- MicroAmp[®] Optical 8-Tube Strips or MicroAmp[®] Optical Tubes without cap
- MicroAmp® Optical 8-Cap Strip

MicroAmp® Cap Installing Tool

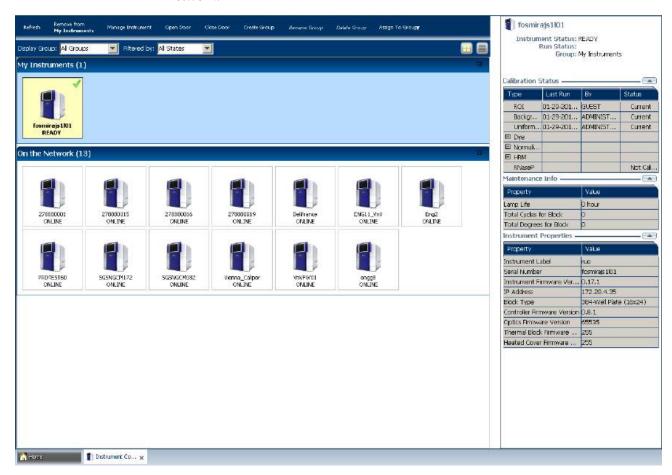
Apply the MicroAmp® Optical 8-Cap Strip (flat)


- 1. Grasp the Cap Installing Tool so that the grooved side is exposed.
- **2.** Hold the strip of caps over the tube strip or the row of tubes.
- **3.** Use the grooved side (shown) of the Cap Installing Tool to push and seat each cap firmly in place. Use a rocking motion to properly seat each cap.

Remove a cap string from a plate

The MicroAmp[®] Cap Installing Tool is also used for removing the MicroAmp[®] Optical 8-Cap Strip from the 96-well optical plates and tray/retainer assemblies. To remove the cap or cap strip:

- 1. Insert the small protrusions on the side of the Cap Installing Tool under the webbing between the caps on a cap strip.
- **2.** Slowly pry the strip from the plate or Tray/Retainer assembly.


Start the experiment

To start an experiment:

- 1. Access the Instrument Console.
- 2. Load the reaction plate or array card into the instrument, as shown on page 41.
- **3.** Run the experiment as shown on page 43.

Instrument Console

The Instrument Console displays all the Vii A^{TM} 7 Instruments discovered on a network.

Left panel

The features on the left panel of the Instrument Console allow:

- Instrument access: Open and close the ViiA[™] 7 Instrument door from the ViiA[™] 7 Software user interface.
- Group management:
 - Create, rename, and delete groups and assign instruments to the groups.
 - Add and remove instruments to and from My Instruments.

Note: To add instruments, select the icon of the ViiATM 7 Instrument that you want to add to the My Instruments list. Then click **Add to My Instruments**. Similarly, click **Remove from My Instruments** to remove an instrument from the My Instruments list. You can also drag and drop the instrument icon into My Instruments or into the group created by you.

- Display instrument groups from the Display Group drop-down menu.
 according to their activity. Select the status from the Filtered By drop-down menu. For more information on the status of an instrument, see "Monitor the experiment" on page 44.
- Instrument management:
 - Monitor experiments (check the run status or monitor a temperature plot or amplification plot during a run). For more information on monitoring experiments, see "Monitor the experiment" on page 44.
 - Maintain instruments (check the calibration status of instruments and perform different calibrations). For more information on Instrument maintenance, refer to *Applied Biosystems ViiA™ 7 Real-Time PCR System User Guide* (PN 4442661).
 - Manage files (upload setup files; download completed experiments; and create, rename, and delete experiment files and plate setup folders).

Note: Completed experiments are downloaded into the default folder **Completed Experiments**.

Note: To manage files, click **Manage Instrument**.

Use the File Manager to create, rename or delete folders for holding setup files for starting a run or completed experiments for analysis. To move setup files from one folder to the other, click **Move** and select the setup folder you want to shift the setup file into.

IMPORTANT! To Manage and Monitor, you must move instruments from On the Network to My Instruments or a custom group. You can start a run and calibrate instruments present only in the My Instruments group or the custom group(s) that you created.

Right panel

The right panel of the Instrument Console displays:

- The name of the instrument whose instrument icon is selected.
- The run status of the selected instrument.
- The group the instrument belongs to.
- The calibration status, maintenance reminders and instrument properties of the selected instrument.

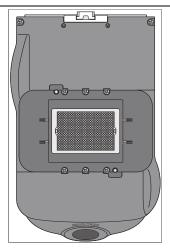
The calibration status is indicated by the \triangle icon. The icon appears in the Status column of the Calibration Status table after the last reminder date before the calibration expires.

Status icons

You can monitor the instrument status and view calibration and other information in the Instrument Console.

ViiA™ 7 Instrument status icon

The status of an instrument is represented by an icon in the top-right corner of the thumbnail representation of the instrument on the Instrument Console. An instrument displays the status when you place the instrument icon under My Instruments or under the Group(s) that you created.

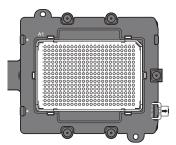

To monitor the instrument status:

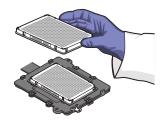
- 1. On the Home tab (), select **Instrument Console**. If you do not see an instrument, click **Refresh** in the instrument console toolbar.
- 2. If needed, move the instrument from the On the Network group to a group which can be monitored:
 - **a.** Click the instrument of interest, then click **Assign to Group** in the instrument console toolbar.
 - **b.** Select the **My Instruments** or a personal group in the drop-down list. The instrument is now monitored.

lcon	Instrument status
fosmirajs 1 l l 1 READY	Ready
(no icon)	Available on the network but cannot be monitored because that instrument is not under My Instruments or a group you created.
*	Run in process (The time remaining for the run is shown to the left of the icon.)
<u></u>	Unavailable
*	Incompatible firmware version
28	No longer connected to the network
	Error occurred during run

Load the reaction plate or array card into the instrument

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the temperature of the sample block(s) can exceed 100 °C. Keep your hands away until the sample block(s) reaches room temperature.


Sample block


IMPORTANT! Wear powder-free gloves when you handle the **reaction plate or array** card.

IMPORTANT! Plates and array cards should be loaded and unloaded by operators who have been warned of the moving parts hazard and have been adequately trained.

1. Touch on the ViiATM 7 Instrument touchscreen or click **Open Door** in the Instrument Console screen of the ViiATM 7 Software to allow the plate adapter to come out from the instrument side.

- 2. Place the reaction plate or array card on the plate adapter. Ensure that the reaction plate or array card is properly aligned in the holder.
 - Make sure the well A1 is positioned at the top-left of the tray for any of the plate formats.
 - Make sure the barcode (for any of the plate formats) is facing the front of the instrument.

• If using reaction tubes or tube strips, make sure you use adaptors. The adaptors are attached to the plate transport arm. The tray containing the tubes or tube strips must be placed on the adaptor and not into the sample block directly.

IMPORTANT! For optimal performance with partial loads, load at least 16 tubes and arrange them in:

Adjacent columns of 8 tubes, using rows A through H. For example, use wells in columns 6 and 7 (rows A through H).

Or

Adjacent rows of 8 tubes, using columns 3 through 10. For example, use wells in row D (columns 3 through 10) and row E (columns 3 through 10).

WARNING! Make sure that you use the flat caps for the $0.2\mu L$ tubes and $0.1\mu L$ tubes. Use of rounded caps damages the heated cover.

3. Touch on the ViiA[™] 7 Instrument touchscreen or click **Close Door** in the Instrument Console screen of the ViiA[™] 7 Software to retract the plate adapter back into the instrument.

Enable or change the Notification Settings

You can configure the ViiA[™] 7 Software to alert you by email when the ViiA[™] 7 Instrument begins and completes a run, or if an error occurs during a run.

Note: For details on using the Notification Settings feature, refer to the *Applied Biosystems ViiA*TM 7 *Real-Time PCR System User Guide* (PN 4442661).

Run the experiment

You can run the experiment in either of the following two ways:

- From the ViiATM 7 Software
- From the ViiATM 7 Instrument touchscreen

Note: The example experiments in each of the getting started guide booklets start a run from the ViiATM 7 Software.

IMPORTANT! Make sure that instrument calibration is up-to-date. If a calibration has expired, you will get a warning when you start a run. For information on calibrating the ViiA[™] 7 Instrument, refer to Applied Biosystems ViiA[™] 7 Real-Time PCR System User Guide (PN 4442661).

IMPORTANT! Do not attempt to open the access door during the run. The door is locked while the ViiATM 7 Instrument is in operation.

From the ViiA™ 7 Software

- 1. In the ViiATM 7 Software, click **Run** in the navigation pane.

2. Click START RUN. Select the instrument for the run from the drop-down menu of the instruments placed under My Instruments.

IMPORTANT! Make sure that the instrument to run the experiment on is in My Instruments or the custom group, and that it is ready to run an experiment. If the preferred instrument is not present under My Instruments or the custom group, or if it is unavailable, clicking START RUN does not display instrument names in the drop-down menu.

From the ViiA™ 7 Instrument touchscreen

1. Touch the ViiATM 7 Instrument touchscreen to awaken it.

Note: If the touchscreen is not at the Main Menu screen, touch

- **2.** In the Main Menu screen, touch **Browse Experiments**.
- **3.** In the Browse screen, touch **Folders**, to display the folders containing the experiment setup files.
- **4.** Touch any of the folder names to display the experiments in that folder.
- 5. In the Experiments screen, select the desired experiment, then touch **Wiew**/ Edit to view or edit the experiment before starting the run.

Note: You can start a run immediately by clicking **6 Start Run**, then go to step 8.

- **6.** (Optional) Modify the experiment parameters as needed. You can use the:
 - Add and Delete buttons to add and delete a stage or step to the thermal profile.
 - Add Melt Curve button to add a melt curve to the thermal profile.
 - Save button to save the experiment you modify.
- 7. In the Save Experiment screen, touch each field to edit the:
 - Experiment name
 - Folder to save the experiment
 - Reaction volume
 - Barcode Number
 - Notes

When finished, touch **6** Save & Start Run to start the experiment.

8. In the Start Run screen, touch each field as needed to modify the associated parameter, then touch **3** Start Run Now to start the experiment.

Note: When the run is complete, touch to unload the plate from the instrument. You can download the results of the experiment from a computer if the instrument is connected to a network, or copy the data to a USB device as explained in "Transfer experiment results" on page 50.

Monitor the experiment

Note: If there is loss of connection during an experiment, remove and then add the instrument to the My Instruments list. You may then resume monitoring the experiment.

You can monitor an experiment run in three ways:

- From the ViiATM 7 Instrument touchscreen, in the same way that you run the experiment (see "From the ViiATM 7 Instrument touchscreen" on page 43).
- From the Run screen of the ViiA[™] 7 Software, while the experiment is in progress, as shown below.
- From the Instrument Console of the ViiA[™] 7 Software (to monitor an experiment started from another computer or from the ViiA[™] 7 Instrument touchscreen) as described in "From the ViiA[™] 7 Software Instrument Console" on page 44.

From the ViiA™ 7 Software Run screen

1. Click **Amplification Plot** from the Run Experiment Menu to monitor the amplification plot of the experiment you are running.

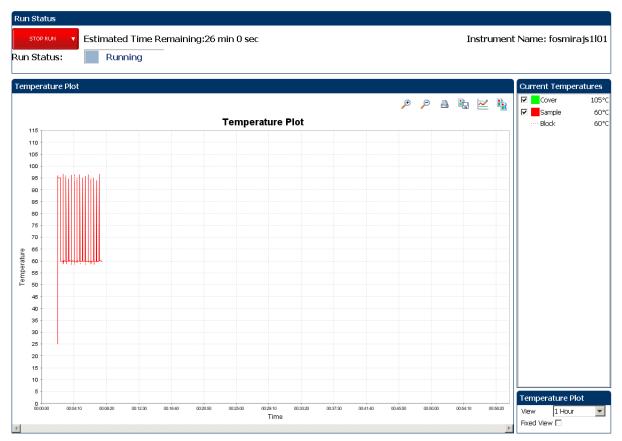
Note: For Melt Curve experiments, click **Melt Curve Plot** from the Run Experiment Menu.

2. Click **Temperature Plot** from the Run Experiment Menu to monitor the temperature plot of the experiment you are running.

From the ViiA™ 7 Software Instrument Console

- 1. In the Instrument Console screen, select the icon of the instrument that you are using to run the experiment.
- 2. Click Manage Instrument.

3. On the Instrument Manager screen, click **Monitor Running Instrument**.


You can view the progress of the run in real time from the Run screen. During the run, periodically view the Amplification Plot, Temperature Plot and Run Method (see page 46) available from the ViiATM 7 Software for potential problems.

То	Action
Stop the run	In the ViiA™ 7 Software, click STOP RUN .
	In the Stop Run dialog, click one of the following:
	 Stop Immediately to stop the run immediately.
	 Stop after Current Cycle/Hold to stop the run after the current cycle or hold.
	 Cancel to continue the run.
View amplification data in real time	Select Amplification Plot.
	See "To monitor the Amplification Plot" on page 46.
View temperature data	Select Temperature Plot.
for the run in real time	See "To monitor the Temperature Plot" on page 47.
View progress of the run	Select Run Method.
in the Run Method screen	See "To monitor the Run Method" on page 47.
Enable/disable the	Select or deselect Enable Notifications.
Notification Settings	See "Enable or change the Notification Settings" on page 42.

Note: The individual experiment booklets provide illustrations of the different experiments in real time.

Note: For Melt Curve experiments, click **Derivative Melt Curve** from the Run Experiment Menu.

The Run screen for a Standard Curve experiment run looks like this:

To monitor the Amplification Plot

To view data in the Amplification Plot, click **Amplification Plot** from the Run Experiment Menu, select the Plate Layout tab, then select the wells to view.

The Amplification Plot screen allows you to view sample amplification as your instrument collects fluorescence data during a run. If a method is set up to collect real-time data, the Amplification Plot screen displays the data for the wells selected in the Plate Layout tab. The plot contrasts normalized dye fluorescence (Δ Rn) and cycle number.

The Amplification Plot screen is useful for identifying and examining abnormal amplification, including:

- Increased fluorescence in negative control wells.
- Absence of detectable fluorescence at an expected cycle (determined from previous similar experiments run using the same reagents under the same conditions).

Note: If you notice abnormal amplification or a complete absence of signal, troubleshoot the error as explained in the Vii A^{TM} 7 Software Help (click \bigcirc or press **F1**).

To monitor the Temperature Plot

To view data in the Temperature Plot screen, click **Temperature Plot** from the Run Experiment Menu.

During a run, the Temperature Plot screen displays the temperatures of the sample block(s), the heated cover, and samples (calculated) in real-time.

То	Action
Add or remove temperature plots	Select Cover or Sample Block to view the presence of the associated data in the plot.
Change the time to display in the plot	From the View drop-down menu, select the amount of time to display in the plot.
Display a fixed time window during the instrument run	Select Fixed View .
If the entire plot does not fit in the screen, the screen is not updated as the run progresses. For example, if you select 10 minutes from the View drop-down menu, the plot will show data for 10 minutes. If the Fixed View is:	
 Deselected, the plot updates as the run progresses even after 10 minutes. 	
 Selected, the plot does not update as the run progresses even after 10 minutes. 	

The Temperature Plot screen can be useful for identifying hardware failures. When monitoring the Temperature Plot screen, observe the Sample and Block plots for abnormal behavior.

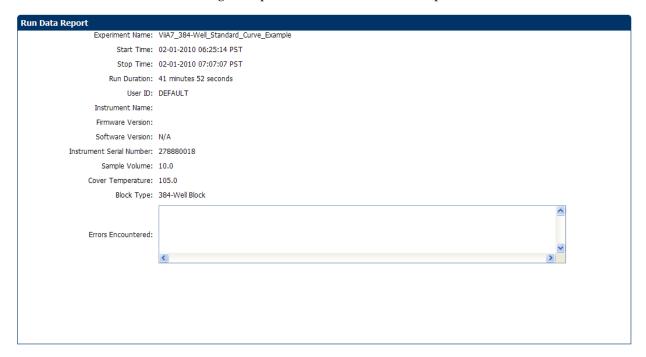
- The Sample and Block plots should mirror each other approximately. A significant deviation of the plots may indicate a problem.
- The Cover plot should maintain the constant temperature specified in the method. A departure from the constant temperature may indicate a problem.

Note: If you notice abnormal temperature plot, troubleshoot the error as explained in the Vii A^{TM} 7 Software Help (click \bigcirc or press F1).

To monitor the Run Method

To view data in the Run Method screen, click **Run Method** from the Run Experiment Menu.

The Run Method screen displays the run method selected for the run in progress. The software updates the Run Status field throughout the run.


То	Action
Change the number of cycles	In the Adjust # of Cycles field, enter the number of cycles to apply to the Cycling Stage.
Add a melt curve stage to the end of the run	Select Add Melt Curve Stage to End.

То	Action
Add a Hold stage to the end of the run	Select Add Holding Stage to End.
Apply your changes	Click Send to Instrument.

If an alert appears, click the error for more information and troubleshoot the problem as explained in the Vii A^{TM} 7 Software Help (click \bigcirc or press **F1**).

To view the run data

After a run is complete, you can view a run report by clicking **View Run Data**. The View Run Data screen displays information about the completed run, as in the following example from a Standard Curve experiment:

The run report data helps in:

- Comparing two experiments of the same type run on two different instruments.
- Troubleshooting. For example, after a firmware upgrade, you can compare an
 experiment run before and after the upgrade to determine if the upgrade affected
 performance.

From the ViiA[™] 7 Instrument touchscreen

The touchscreen displays the method for the experiment, the date and time at which the run started, the time remaining in the run, and other information.

То	Action	
Display the time elapsed and the time remaining in the run	Touch the 🕒 Time View tab , then touch 🔳 Experiment View tab to return to the Run Method screen.	
Stop the run	Touch STOP to stop the protocol run immediately.	


То	Action
View the Events Log	Touch the status bar to display the events log.

The run method on the ViiATM 7 Instrument touchscreen looks like this:

Experiment View

Time View

Unload the instrument

When your ViiA™ 7 Instrument displays the Main Menu screen, unload the reaction plate from the instrument and transfer the experiment data to the computer for analysis.

Unload the reaction plate or array card

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the temperature of the sample block(s) can exceed 100 °C. Keep your hands away until the sample block(s) reaches room temperature.

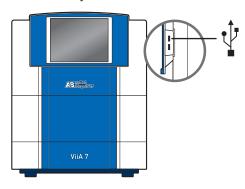
- 1. Touch on the ViiATM 7 Instrument touchscreen or click **Open Door** in the Instrument Console screen of the ViiATM 7 Software.
- **2.** Remove the reaction plate or array card from the plate adapter.
- 3. Touch or click **Close Door** to retract the plate adapter back into the instrument.

If the ViiATM 7 Instrument does not eject the plate, remove the plate as follows:

- a. Power off the ViiATM 7 Instrument.
- **b.** Wait for 15 minutes, then power on the ViiATM 7 Instrument and eject the plate.
- **c.** If the plate does not eject, power off and unplug the ViiA[™] 7 Instrument, then open the access door.
- **d.** Wearing powder-free gloves, reach into the ViiATM 7 Instrument and remove the plate from the heated cover, then close the access door.
- **e.** Perform a background calibration to confirm that the sample block has not been contaminated.

Transfer experiment results

You can transfer the experiment results in either of the following two ways:


Download the experiment from the ViiA™ 7 Instrument over the network

- 1. In the ViiA™ 7 Software, select **Instrument** ➤ **Instrument Console**.
- Select the instrument icon of the ViiA[™] 7 Instrument you just used to run the experiment from the My Instruments list.
- 3. Click Manage Instrument to open the Instrument Manager.
- 4. In the Instrument Manager, click Manage Files.
- **5.** In the Experiments panel, select the experiment to download. Click **Download**.
- **6.** In the Save dialog box, select the folder to hold the experiment results and click **Save**. The experiments folder is located at:

<drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments\ where, <drive> is the computer hard drive on which the ViiATM 7 Software is installed. The default installation drive for the software is the D: drive.

Transfer the experiment from the ViiA™ 7 Instrument to the computer via a USB drive:

1. If not already connected to the instrument, connect a USB drive to the USB port.

- 2. Touch the ViiATM 7 Instrument touchscreen to awaken it.
- 3. If the touchscreen is not at the Main Menu screen, touch

- **4.** In the Main Menu, touch **M** Collect Results to save the data to the USB drive.
- **5.** Select one or multiple experiments (by touching them). Then touch **USB** to copy selected experiments to the USB drive.

Note: If your instrument cannot find the USB drive, remove the USB drive, then try again. If the instrument still does not recognize the USB drive, try another USB drive.

- **6.** Touch to return to the Main Menu.
- **7.** Remove the USB drive from your instrument, then connect it to one of the USB ports on your computer.
- **8.** In the computer desktop, use the Windows explorer to open the USB drive.
- **9.** Copy the example experiment file to: *<drive>*:\Applied Biosystems\ViiA7 Software v1.1\experiments\ where *<drive>* is the computer hard drive on which the ViiA™ 7 Software is installed. The default installation drive for the software is the D: drive.

Review experiment results

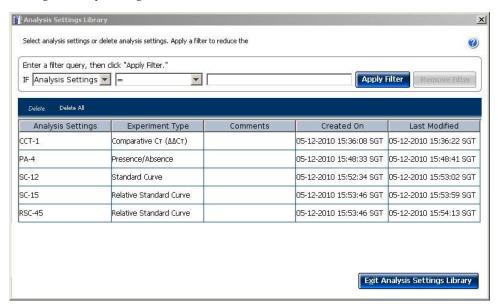
About analysis results

Immediately after a run, the ViiATM 7 Software automatically analyzes the data using the default analysis settings, then displays the Amplification Plot screen.

Note: For auto-analysis of data, after a run, go to **Tools** > **Preferences** > **Experiment** and select the **Auto Analysis** check box.

Note: For Genotyping experiments, the $ViiA^{TM}$ 7 Software displays the Allelic Discrimination Plot screen.

To reanalyze the data, select all the wells in the plate layout, then click **Analyze**.


About the Analysis Settings Library

Analysis Settings are different for each experiment type. If the default analysis settings in the $ViiA^{TM}$ 7 Software are not suitable for your own experiment, you can change the settings in the Analysis Settings dialog box, then reanalyze your experiment.

You can save the changed analysis settings to the Analysis Settings Library so that you can use them in other experiments.

In the Analysis Settings Library dialog box you can apply a filter to reduce the number of settings protocols displayed.

You can access the Analysis Settings Library from the Tools menu. The Analysis Settings Library dialog box looks like this:

To change the analysis settings and to save them to the Analysis Settings Library:

1. From the Experiment Menu pane, select **Analysis**.

- **2.** On the Analysis screen, click **Analysis Settings** to open the Analysis Settings dialog box.
- **3.** Change the analysis settings as per your requirement.
- **4.** Click **Save to Library** to save the changes you have made to the Analysis Settings Library.

You can import the analysis settings you have previously saved to the Analysis Settings Library, by clicking **Load from Library** in the Analysis Settings dialog box.

To override calibration

Each experiment file (.eds) stores the calibration data from the ViiA™ 7 Instrument it was run on. The calibration data can affect the analysis results of an experiment.

If you have run multiple experiments on different Vii A^{TM} 7 Instruments and prefer the analysis results from a particular instrument, then you can choose to use the calibration data from another Vii A^{TM} 7 Instrument.

To use the calibration data of another experiment

- 1. Open the experiment file (.eds), in which you want to import the calibration data from another ViiATM 7 Instrument, in the ViiATM 7 Software.
- 2. Go to Analysis ➤ Override Calibration ➤ Use Calibration From Another File....

- **3.** Browse to experiment file (.eds) from which you want to use the calibration data. **Note:** You can choose to override the calibration data in an experiment with the calibration data of only the same experiment type.
- 4. Click Open.

To revert to the original calibration data

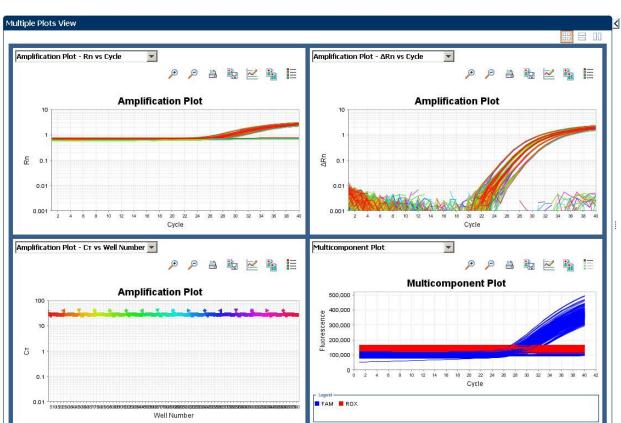
- 1. Open the experiment file (.eds), in which you want to import the original calibration data, in the ViiATM 7 Software.
- 2. Go to Analysis > Override Calibration > Revert To Original Calibration.

The experiment file will display analysis results as per the calibration data of the $ViiA^{TM}$ 7 Instrument that the experiment was run on.

To display wells

To display specific wells in the analysis plots, select the wells in the Plate Layout tab:

- To select wells of a specific type, use the Select Wells With drop-down menus: Select **Sample**, **Target**, or **Task**, then select the sample, target, or task name.
- To select a single well, click the well in the plate layout.
- To select multiple wells, click and drag over the desired wells, press Ctrl-click, or press Shift-click in the plate layout.
- To select all the wells, click the upper left corner of the plate layout.


The plate layout for a Standard Curve experiment looks like this:

To display multiple plots

Use the Multiple Plots View screen to display up to four plots simultaneously. To navigate within the Multiple Plots View screen, from the Experiment Menu pane, select **Analysis** • Multiple Plots View.

- Similarly, to display two plots in rows, click \equiv **Show plots in two rows**. and to display two plots vertically, click $\parallel \parallel$ **Show plots in two columns**.
- To display a specific plot, select the plot from the drop-down menu above each plot display.

The Multiple Plots View screen for a Standard Curve example experiment looks like this:

To display an expanded view of a plot or wells

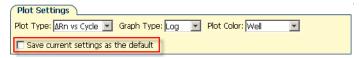
Analyzed: 384

- Click ≥ to expand the view of a plot, displayed on the left-hand side of the screen.
- Click does not the view of the Plate Layout or Well Table displayed on the right-hand side of the screen.

To edit plot properties

Use the Plot Properties dialog box on the Analysis screen to edit plot settings such as the font and color of the plot text, and the labels on the X axis and Y Axis.

1. Click on the Analyze screen (the icon appears above the plot) to open the Plot Properties dialog box


- **2.** Edit the settings under the General, X Axis, and Y Axis tab.
 - Click the General tab to edit the plot title text, font, or color. You can also select whether to show the plot title.
 - Click the X Axis tab to edit the x axis label text, font, or color; select the tick marks and tick mark labels to display; and select the range to display.
 - Click the Y Axis tab to edit the y axis label text, font, or color; select the tick marks and tick mark labels to display; and select the range to display.

3. Click OK.

To save current settings as default

You can change the Plot Settings for the different analysis plots, and save them as defaults.

Select the **Save current settings as the default** check box on the respective plot screens under the Analysis Experiment Menu.

To publish the analyzed data

То	Click
Save a plot as an image file	
Print a plot	
Copy a plot to the clipboard	Ph
Print a report	Print Report
Export data	

То	Go to	Then
Print the plate layout	File ▶ Print	Select the background color, and click Print
Create slides	File ▶ Send to PowerPoint	Select the slides for your presentation, and click Create Slides
Print a report	File ▶ Print Report	Select data for the report, and click Print Report

Export an experiment

About exporting an experiment

The Export feature of ViiATM 7 Software allows you to export:

- Plate setup files for future experiments.
 Plate setup files contain setup information such as the well number, sample name, sample color, target name, dyes, and other reaction plate contents.
- Analyzed data in different formats for further analysis.
 The data can be exported in the ViiA[™] 7 format, the 7900 SDS format

The data can be exported in the ViiA[™] 7 format, the 7900 SDS format, and the RDML format.

The 7900 format is applicable only to Standard Curve, Relative Standard Curve, Genotyping, Presence/Absence, and Melt Curve experiments.

The RDML export format is applicable only to Standard Curve, Relative Standard Curve, Comparative C_T , and Melt Curve experiments. The RDML format is available only in a single file format.

For Standard Curve experiments, you can also export the analyzed data from the ViiA $^{\text{TM}}$ 7 Software to the external applications, TaqMan $^{\circledR}$ Protein Expression Data Analysis Software and CopyCaller $^{\text{TM}}$ Software if they are installed on your computer before the ViiA $^{\text{TM}}$ 7 Software is installed. The applications appear in the Tools menu.

Gene Expression studies to carry out a comparative analysis.

Export procedure

Note: If you choose the Auto Export option during experiment setup or before running an experiment, the data is automatically exported to the location you specified. If you did not set the Auto Export option, the analyzed data is not exported automatically.

- Open the experiment file that contains the data to export, and from the Experiment Menu, click Export.
- **2.** Select the format for exported data:
 - ViiA[™] 7 Format (supports .txt, .xls, and .xlsx data).
 - 7900 Format Single experiments are exported in the SDS 2.4 detector centric
 export format of the 7900 Sequence Detecting System.
 Studies are exported in the SDS 2.3 RQ manager detector centric export
 format of the 7900 Sequence Detecting System
 The 7900 format supports only the .txt type of data.
 - **RDML Format** Real Time Data Markup Language (supports only .xml type of data).

- 3. Select to export all data in one file or in separate files for each data type.
 - One File All data types are exported in one file.
 - If you select the *.xls format, a worksheet is created for each data type.
 - If you select the *.txt format, the data are grouped by data type.
 - Separate Files Each data type is exported in a separate file. For example, if you select three different data types Results, Amplification, and Multicomponent to export, three separate files (one each for Results, Amplification, and Multicomponent) are created. You can select the type of file (*.xls, *.xlsx or *.txt) to export from the File Type drop-down menu.

Note: You cannot use an exported *.xls or an *.xlsx file when importing plate setup information.

- **4.** (*Optional*) Select the **Open file(s) when export is complete** check box to automatically open the file when export is complete.
- **5.** Enter a file name and location.
 - **a.** Enter a name for the export file in the **Export File Name** field.
 - **b.** Enter the **Export File Location**. Click **Browse** if you do not want to save the export file in the default export folder.

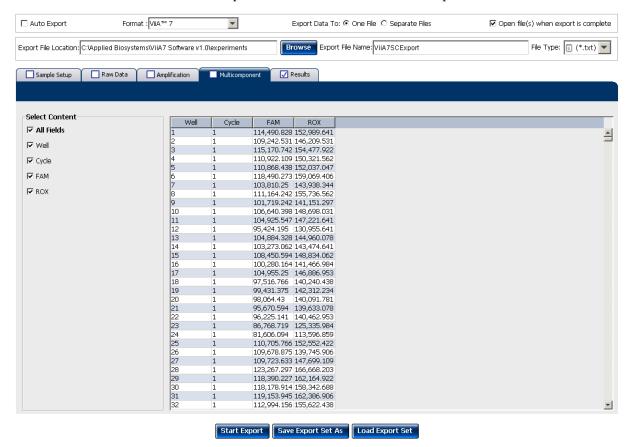
Note: To set up the Export File Location, go to Tools ▶ Preferences, and select the Export tab. You can select the Use Last File Location or Use Default Folder check box.

6. Select the data to export:

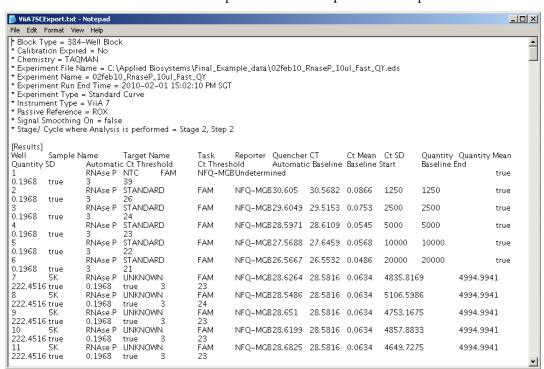
Select	To export
Sample setup	Well, sample name, sample color, and target name of samples in the plate
Raw data	Raw fluorescence data for each filter, for each cycle
Amplification data	Amplification results, such as C _T values, Rn, or ΔRn
Multicomponent data	Fluorescence data for each dye, for each cycle

Select	To export
Results	Results information, such as C_T values, Rn, or calls
Technical Replicate Results (Tech. Rep. Results)	Technical replicates information, such as Sample name, Target name, Task, or RQ
Biological Replicate Results (Bio. Rep. Results)	Biological replicates information, such as Biogroup name, Target name, Task, or RQ
Clipped Data	Information that is unique to the 7900 format. Data from the last three raw data points per step (clipped from the rest). The three data points are averaged to give you the final fluorescence data value for each step.

Note: Results data are not available for export until the run status is complete and the data are analyzed.

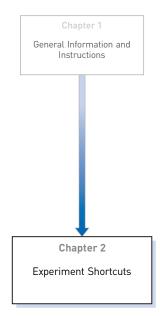

Note: The Technical Replicate Results, Biological Replicates Results, and Clipped Data are available only in Relative Standard Curve and Comparative C_T experiments.

- 7. (Optional) For Standard Curve experiments, select the external application, TaqMan[®] Protein Expression Data Analysis Software or CopyCaller[™] Software if either Software is installed on your computer.
- **8.** (*Optional*) After you have defined the export properties or after moving the table headings order, you can save those export settings as an export set by clicking **Save Export Set As**. Later you can import the heading order into another file by clicking **Load Export Set**.


Note: It is advisable to keep the default order of the table headings if you are using the external Applied Biosystems applications, **TaqMan**[®] **Protein Expression Data Analysis Software** or **CopyCaller**[™] **Software** for further analysis.

9. Click Start Export.

The Export screen for a Standard Curve experiment looks like this:



The exported file when opened in Notepad looks like this:

2

Experiment Shortcuts

This chapter provides you with shortcuts to use in the ViiA™ 7 Software after you have learned experiment basics.

You can reuse experiment settings and plate setup information by: directly importing and editing a template, using the QuickStart feature with a template, importing experiment setup information, or importing a sample definition file; you can also prepare several experiments at once or create a new experiment using the ReadiApp feature.

The chapter covers:

Create an experiment from a template	62
Run an experiment with QuickStart	63
■ Import plate setup for an experiment	65
■ Import sample information	66
■ Use a template to create a batch of experiments	69
■ Create an experiment using ReadiApp	71

Create an experiment from a template

You can use a template to create a new experiment. Templates are useful when you want to create many experiments with the same experiment parameters.

You can create an experiment from a template from the ViiATM 7 Software and from the ViiATM 7 Instrument touchscreen.

Note: To access the ViiATM 7 Software example templates, navigate to the templates folder located at <drive>:\Applied Biosystems\ViiA7 Software v1.1\config.

To create a template

1. Log in to the ViiATM 7 Software and, from the Home screen, open an existing experiment, or create a new experiment.

Note: To create a new experiment using the Experiment Setup, see "Set up an experiment" on page 13.

- 2. Select **File** ▶ **Save As Template**.
- **3.** Enter a file name, select a location for the template, then click **Save** and **Close**. You can use that experiment as a template for similar experiments.

To create a new experiment using a template

- 1. From the Home screen, click **Template**.
- Locate and select the template file, then click Open.A new experiment is created using the setup information from the template.
- **3.** Edit the experiment properties, plate definitions, plate assignments, and run method before you prepare the reactions and run the experiment.
- 4. Proceed to preparing reactions, running the experiment, and analyzing the data.

To create an experiment using a template on the ViiA™ 7 Instrument touchscreen

You can run experiments using templates from the $ViiA^{TM}$ 7 Instrument touchscreen by importing the templates from the $ViiA^{TM}$ 7 Software instrument console or a USB drive. You can also modify the experiment parameters in the templates as per your requirement.

To run a pre-existing template

- 1. Touch **View Template** on the Home screen of the ViiA™ 7 Instrument touchscreen.
- **2.** Select a pre-existing template from the templates list on the View Templates screen.
- **3.** Touch **View** to see the run profile before you start a run.

4. After confirming the template setup is correct, touch to go back to View Template screen. Touch **Start Run**.

To edit a template before running the experiment

1. Touch Create Experiment on the View Templates screen to create a new experiment from the existing template.

Note: Select a template before you touch **Create Experiment**.

- 2. Edit the experiment parameters in the Create New Experiment screen.
- 3. Touch Save & Exit to save and exit the experiment or touch Save & Start Run to save and start an experiment run.

Run an experiment with QuickStart

You can use a template to run an experiment with the $ViiA^{TM}$ 7 Software QuickStart feature:

QuickStart from the ViiA™ 7 Software

- 1. Prepare the reactions.
- **2.** Log in to the ViiA[™] 7 Software and, from the Home screen, click **Q QuickStart** to access the QuickStart dialog box.
- **3.** In the QuickStart dialog box, enter or select the:
 - **a.** Instrument icon of the instrument to perform the run on.
 - **b.** Experiment name.
 - **c.** Experiment template file.
 - **d.** (Optional) Barcode and User Name for the experiment.
- **4.** (*Optional*) To review the experiment or to make changes to any of the experiment parameters, click **Experiment Setup**.

Select an instrument and an experiment template file to run a new experiment. Load the reaction plate into the instrument, then click Start Run Select Instrument Enter Experiment Name and Location Location: oftware v1.0\experiments\2010-04-15 124807.eds Browse * Experiment Name: 2010-04-15 124807 Barcode (Optional): Comments (Optional) User Name (Optional): Select Experiment Template Browse * Experiment Template File: Samples Sample Browse You may import a plate setup file or a sample definition text file. Alternatively, you may directly edit the sample names in the table to the left, or copy and paste sample names from a spreadsheet. Experiment <u>S</u>etup START RUN Cancel

The QuickStart dialog box looks like this:

5. Proceed to running the experiment and analyzing the data.

QuickStart from the ViiA™ 7 Instrument touchscreen

You can QuickStart an experiment from the ViiATM 7 Instrument touchscreen in the following ways:

- Start an experiment using a pre-defined template.
- Start an experiment with a pre-defined short-cut button.

Start an experiment using a pre-defined template

You can use a pre-existing template from the default experiments folder or use a custom template from another folder to start a run.

Start an experiment with a pre-defined short-cut button

The ViiATM 7 Instrument touchscreen displays up to 18 shortcut buttons to templates or folders that contain experiments to be run. The shortcut buttons are present under MY SHORTCUTS on the Home screen. To start a run, touch any of the pre-defined experiment or folder buttons.

To create a shortcut button for a preferred experiment or a folder that contains experiments:

1. Touch **Settings** to open the Settings Menu.

- 2. Touch **Set Up Shortcuts** to list the Shortcut Targets.
- **3.** On the Shortcut Targets list screen, select an existing template Shortcut Target button or an unused button.
- **4.** Touch **Set Shortcut**. If you selected an unused button, then touching Set Shortcut will list out the templates and folders to set the shortcut for.
- **5.** Under the **From Templates** tab, select the templates for which you are creating the shortcut button.
- **6.** (*Optional*) Create a shortcut button to show the templates or experiments in a particular folder for quick access, from those listed under the *From Folders* tab. You can touch *Edit* to create or edit shortcut buttons.

Import plate setup for an experiment

You can import the plate setup for a new experiment from an exported file with one of the following formats:

- *.txt Text format
- *.xml XML format
- *.csv Comma separated values format
- *.sdt Sequence detecting system (sds) template files format
- *.sds 7900 v2.3 format

IMPORTANT! Make sure the file you select contains only plate setup data and that the experiment types match.

Note: For instructions on exporting an experiment, see "Export an experiment" on page 57.

To Import the plate setup data:

- 1. Create a new experiment or open an existing experiment.
- 2. In the Experiment Setup screen, select **File ▶ Import Plate Setup** or access the Import drop-down menu in the toolbar and select **Import Plate Setup**.
- **3.** Click **Browse**, locate and select the file to import, then click **Select**.

2 Chapter 2 Experiment Shortcuts Import sample information

4. Click **Start Import**. The setup data from the exported text file is imported into the open experiment.

Note: If your experiment already contains plate setup information, the software asks if you want to replace the plate setup with the data from the import file. Click **Yes** to replace the plate setup.

5. After importing plate setup information, use Experiment Setup to set up your experiment, and then run the experiment.

Note: You can import plate setup information from a 96-well plate into a 384-well plate, provided that the file you are importing the information from is a .txt file.

Import sample information

You can import sample information from a sample definition file to include in the plate setup for your experiment. A sample definition file is a comma-delimited file (*.csv) or a tab-delimited text file (*.txt) that contains the following setup information: well number, sample name, and custom sample properties.

Note: Make sure that the sample definition file you select contains only sample information.

Create a sample definition file

- 1. Open a text editing program such as Notepad.
- 2. Enter the following column headers in the first row (press the Tab key between each entry if you are saving the file as *.txt or enter a comma between each entry if you are saving the file as *.csv):
 - Well
 - Sample Name
 - (Optional) Column header names for up to six user-defined custom fields (for example, Custom 1, Custom 2, etc.)
- **3.** For each subsequent row, enter the well number, press the **Tab** key or enter a comma, then enter the sample name. Optionally, press the **Tab** key, then enter the custom properties for the sample.
- **4.** Save the file with the .txt or .csv file extension.

	А	В	С	D	Е	F	G	Н
1	Well	Sample Name	ID	Age	Sex	Weight	HairColor	Smoker
2	1	Sample 1	1	22	Female	25	black	Yes
3	2	Sample 2	2	25	Male	26	brown	No
4	3	Sample 3	3	45	Female	50	blonde	Yes
5	4	Sample 4	4	31	Male	33	red	Yes
6	5	Sample 5	5	29	Female	46	grey	No
7	6	Sample 6	6	26	Male	35	black	No
8	7	Sample 7	7	31	Female	33	black	Yes
9	8	Sample 8	8	32	Male	67	black	No
10	9	Sample 9	9	32	Female	55	brown	Yes
11	10	Sample 10	10	33	Male	44	blonde	Yes
12	11	Sample 11	11	34	Female	25	red	No
13	12	Sample 12	12	34	Male	26	grey	No
14	13	Sample 13	13	35	Female	50	black	Yes
15	14	Sample 14	14	35	Male	33	black	No
16	15	Sample 15	15	36	Female	46	black	Yes
17	16	Sample 16	16	36	Male	35	brown	Yes
18	17	Sample 17	17	37	Female	33	blonde	No
19	18	Sample 18	18	37	Male	67	red	No
20	19	Sample 19	19	38	Female	55	grey	Yes

An example sample definition, saved with the .csv extension, file looks like this:

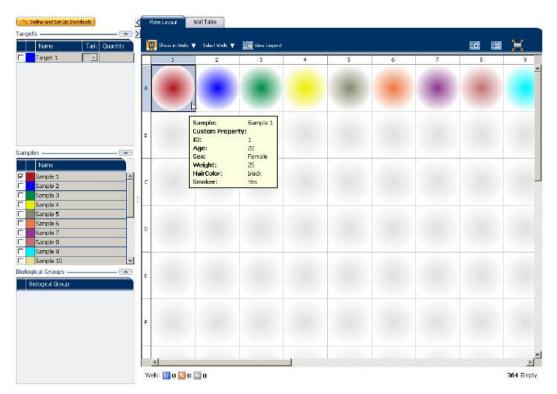
Import sample information from a sample definition file

20 Sample 20

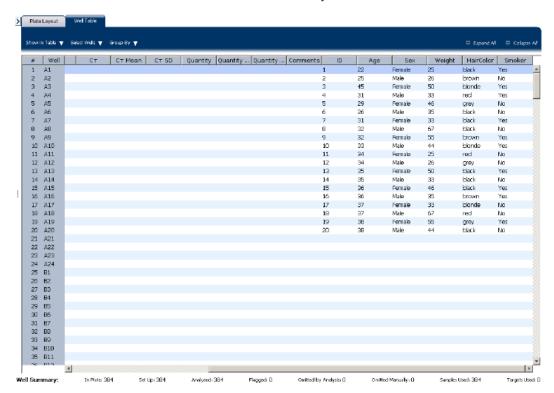
1. Create a new experiment or open the experiment to receive the setup data (select **File ▶ Open**, select the file to open, then click **Open**).

38 Male

44 black

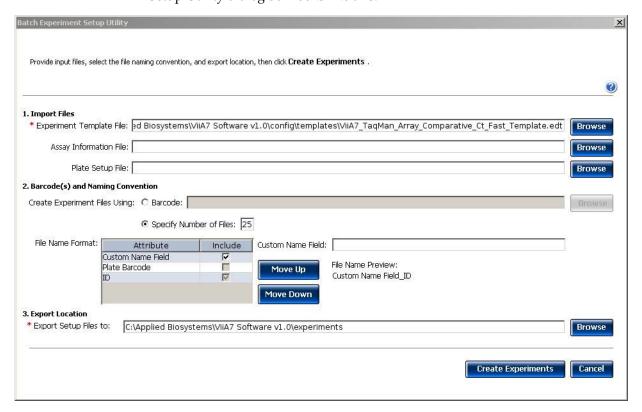

- 2. From the open experiment, select File > Import Plate Setup.
- **3.** Click **Browse** to browse your computer for a sample definition text file (*.csv). After you locate the file and select it, click **Select**.
- 4. Click Start Import.
- **5.** If your experiment already contains plate setup information, the software asks you if you want to replace the plate setup with the data from the file. Click **Yes** to replace the plate setup information.

The samples appear in the Samples table for the experiment. All samples and well assignments in the experiment are replaced with those in the file. If defined, the custom sample properties also appear in the Well Table of the Analysis Section, and also in the Plate Layout tooltips in both the Setup and Analysis screens. The custom fields can be exported with the results data.


Note: You cannot edit the custom sample properties from within the Well Table. To modify this information, edit the custom fields in the sample definition file and import the file again. All of the sample information in the experiment is replaced with the information in the new file.

2 Chapter 2 Experiment Shortcuts Import sample information

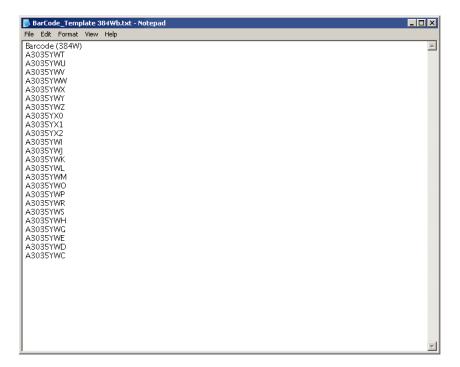
The Assign screen with information from the above sample definition file looks like this:


The Well Table in the Analysis section looks like this:

Use a template to create a batch of experiments

Use the batch experiment utility to create multiple experiment files from the same template without using Experiment Setup.

1. In the menu bar, select **Tools ▶ Batch Experiment Setup**. The Batch Experiment Setup Utility dialog box looks like this:



- **2.** Select the file(s) to use to create the new experiments:
 - **a.** Click **Browse** in the Experiment Template File field.
 - **b.** Locate an *.edt file to import, then click **Select**.
 - **c.** (*Optional*) Repeat **steps 2a** and **2b** for the remaining setup file types to import (Assay Information File (*.txt or *.xml), Plate Setup File (*.txt)).

2

- **3.** Select the option to create experiment files. The selected option determines the number of experiment files created:
 - **Specify Number of Files** Enter a number from 1 to 100.
 - **Barcode** Click **Browse** and select a Barcode File (*.txt) to import. The software automatically adds the Plate Barcode attribute to the file name format. The number of experiments created equals the number of barcodes present in the barcode file.

Note: A Barcode File contains one barcode per line. An example Barcode File looks like this:

- **4.** (*Optional*) Edit the file name format. Use the File Name Preview to verify your settings.
 - Select the check box to include or exclude the Custom Name Field attribute
 from the file name. If included, click the Custom Name Field and enter up to
 100 letters and/or numbers to identify the batch of experiments.

Note: The file name can contain a total of 100 characters, including all file name attributes.

- Click Move Up or Move Down to change the order of the selected file name attributes.
- **5.** Select the location for the experiment files to be created:
 - **a.** Click **Browse** in the Export Setup Files to: field.
 - b. Review the location for the experiment files. Navigate to a new location if you do not want to export the experiment files to that folder, then click Select.
- **6.** Click **Create Experiments**. A confirmation message appears when the batch of experiments has been created.

Create an experiment using ReadiApp

You can use the ReadiApp feature to set up an experiment in the $ViiA^{TM}$ 7 Software. The ReadiApp feature provides a shortcut to create experiments for the assays purchased from Applied Biosystems.

The default ReadiApp templates available in the ViiATM 7 Software include:

- TaqMan[®] Gene Signature Array Cards
- Custom TaqMan® Array Cards
- TaqMan® Gene Expression Assays
- TaqMan® Drug Metabolism Assays
- TaqMan[®] array MicroRNA Cards
- TaqMan[®] Copy Number Assays (CNV)
- TaqMan® SNP Genotyping Assays
- 1. Log in to the ViiA[™] 7 Software and, from the Set Up menu on the Home screen, click **ReadiApp**.
- **2.** Click the assay to use to set up an experiment.

Note: Click Cancel to exit the ReadiApp dialog box.

A new experiment is created using the setup information from the template.

- **3.** (*Optional*) Edit the experiment properties.
- **4.** Proceed to preparing reactions, running the experiment, and analyzing the data.

Chapter 2 Experiment Shortcuts Create an experiment using ReadiApp

Numerics	defining run method 21
7900 Format 57	defining targets, samples, and biological replicates 16
7700 Torritat 37	dilutions
A	guidelines for preparing 30
A	materials for preparing 29
analysis options, setting 15, 52	
Applied Biosystems store, ordering from 12	E
array card, filling and sealing 33	experiment
assigning targets, samples, and biological replicate	exporting 57
groups 18, 20	ordering materials 12
auto-analysis 52	preparing reactions 24
	reviewing results 52
В	running 43
batch experiment utility 69	setting up 13
batch of experiments, from template 69	shortcuts 61
biological replicates	starting 38
assigning 19, 20	experiment name 13
defining 17	experiment properties, defining 13
block type	experiment type 14
384-Well Block 14	Comparative CT ($\Delta\Delta$ CT) 14
96-Well Block (0.2mL) 14	Genotyping 14
Array Card Block 14	Melt Curve 14
Fast 96-Well Block (0.1mL) 14	Presence/Absence 14
,	Relative Standard Curve 14
C	Standard Curve 14
	export data type
calibration 40	Amplification data 58
CAUTION 9	Biological Replicate Results (Bio. Rep. Results) 59
column in .xls file	Clipped Data 59
Well Number 20	Multicomponent data 58
Well Position 20	Raw data 58
comma delimited file 66	Results 59
console, instrument 38	Sample setup 58
consumables, supported 24	Technical Replicate Results (Tech. Rep. Results) 59
D	exporting
	exporting experiments 57
DANGER 9	saving export data as 59
data collection options, settings Amplification 15	selecting export data 58
Post-PCR Read 15	F
Pre-PCR Read 15	
default analysis settings	fluorogenic probe 27
Automatic analysis 15	
Automatic save 15	H
Baseline settings 15	heated cover 47
default reporter 16	
default run method 21	

	RDML Format 57
importing experiment data	reaction plate, sealing 31
plate setup 65	reaction tubes and strips, capping and uncapping 36
sample information 66	reactions
installation CD 5	precautions 29
	preparing 24
L	reagent detection process 27
	reagents, selecting
libraries, using in your own experiments	supported reagents 27
Run Method library 23	SYBR® Green Reagents 14, 28
Samples library 23	TaqMan® Reagents 14, 27
SNP Assay library 23	reporter 16
Targets library 23	results, reviewing 52
	roller assembly 35
M	run method library 23
materials for dilutions	run properties, defining 21
master mix 30	Run screen 45
materials, ordering 12	Amplification Plot 46
melt curve 14	Run Method 47
monitoring the experiment 44	Temperature Plot 47
multiple plots, displaying 54	View Run Data 48
r r r r r r r r r r r r r r r r r r r	running an experiment 43
N	
	S
notification settings, enable or change 42	safety labels, on instruments 9
NULL, values in well assignments 20	sample block(s) 47
	sample definition file, creating 66
0	sample information, importing 66
optical adhesive film 31	samples
ordering materials 12	assigning 19, 20
overriding calibration data 53	defining 17
	SDS 8
P	shortcuts, experiments 61
	storage conditions, photosensitive 36
passive reference 17	system security 7
PCR Stage, editing during experiment design 22	
plate adapter 42	T
plate setup data, importing 65	
plot properties 55	tab-delimited text file, for sample definitions 66
	target, sample, and SNP assay libraries 23
Q	targets
quencher 16	assigning 18, 20
QuickStart 61, 63	defining 16
-	template
R	creating an experiment from a template 62
	creating batch of experiments from template 69
ramp speed 15	thermal profile 21

```
touchscreen, run method
Experiment View 49
Time View 49
transferring experiment results 50

U
unloading an experiment 50
USB
device 44
drive 51

V
ViiA<sup>TM</sup> 7 Format 57

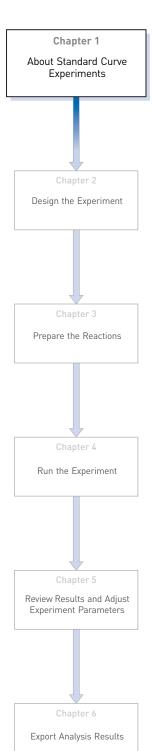
W
WARNING 9
wells, displaying 54
```

Index

Part Number 4441434 Rev. C 12/2011 applied biosystems by Life technologies

BOOKLET 2 Running Standard Curve Experiments

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.


Contents

CHAPTER 1	About Standard Curve Experiments			
	Before you begin	6		
	Assemble required components	6		
	PCR Options			
	About the example experiment	7		
CHAPTER 2	Design the Experiment	9		
	Define the experiment properties	10		
	Define targets, samples, and biological replicates	11		
	Assign targets, samples, and biological groups	12		
	Set up the run method	15		
	Order materials for the experiment	16		
	For more information	16		
CHAPTER 3	Prepare the Reactions	19		
	Assemble required materials	20		
	Prepare the sample dilutions	20		
	Prepare the standard dilution series	21		
	Prepare the reaction mix ("cocktail mix")	21		
	Prepare the reaction plate	22		
	Example experiment reaction plate components			
	To prepare the reaction plate components			
	For more information	25		
CHAPTER 4	Run the Experiment	27		
	Start the run	28		
	Monitor the run	28		
	From the Instrument Console of the ViiA™ 7 Software			
	From the ViiA™ 7 Instrument touchscreen	32		

CHAPTER 5	Review Results and Adjust Experiment Parameters			
	Section 5.1 Review Results	35		
	Analyze the example experiment	35		
	View the Standard Curve Plot	35		
	Purpose	35		
	To view and assess the Standard Curve Plot	35		
	Tips for analyzing your own experiments	37		
	Assess amplification results using the Amplification Plot	38		
	Amplification plots available for viewing	38		
	Purpose	38		
	View the Amplification Plot	38		
	Tips for analyzing your own experiments	42		
	Identify well problems using the Well Table	45		
	Purpose	45		
	View the well table	45		
	Tips for analyzing your own experiments	48		
	Confirm accurate dye signal using the Multicomponent Plot	49		
	Purpose			
	View the Multicomponent Plot			
	Tips for confirming dye accuracy in your own experiment			
	Determine signal accuracy using the Raw Data Plot			
	Purpose			
	View the Raw Data Plot			
	Tips for determining signal accuracy in your own experiments			
	Review the flags in the QC Summary			
	Possible flags			
	For more information	55		
	Section 5.2 Adjust parameters for re-analysis of your own experiments	57		
	Adjust analysis settings	57		
	View the analysis settings	57		
	Adjust analysis settings	58		
	Improve C _T precision by omitting wells	61		
	For more information	62		
CHAPTER 6	Export Analysis Results	. 63		
	Index	. 65		

About Standard Curve Experiments

This chapter covers:

IMPORTANT! First-time users of the ViiATM 7 System please read Booklet 1, *Getting Started with ViiA*TM 7 System Experiments and Booklet 7, $ViiA^{TM}$ 7 System Experiments - Appendixes of this binder thoroughly. The booklet provides information and general instructions that are applicable to all the experiments described in this binder

Note: For more information about any of the topics discussed in this guide, access the Help from within Applied Biosystems ViiA[™] 7 Software by pressing F1, clicking in the toolbar, or selecting **Help** ➤ **ViiA[™]** 7 **Software Help**.

Before you begin

The Standard Curve method is used for determining absolute target quantity in samples. With the standard curve method, the software measures amplification of the target in samples and in a standard dilution series. Data from the standard dilution series are used to generate the standard curve. Using the standard curve, the software interpolates the absolute quantity of target in the samples.

Assemble required components

- **Sample** The tissue group that you are testing for a target gene.
- **Standard** A sample that contains known quantities of the target; used in quantification experiments to generate standard curves.
- **Standard dilution series** A set of standards containing a range of known quantities. The standard dilution series is prepared by serially diluting standards.
- Replicates The total number of identical reactions containing identical samples, components, and volumes.
- **Negative controls** Wells that contain water or buffer instead of sample template. No amplification of the target should occur in negative control wells.

PCR Options


When performing real-time PCR, choose between:

- Singleplex and multiplex PCR (below)
- 1-step and 2-step RT-PCR (page 7)

Singleplex and Multiplex PCR You can perform a PCR reaction using either:

- Singleplex PCR In singleplex PCR a single primer set is present in the reaction tube or well. Only one target or endogenous control can be amplified per reaction.
- Multiplex PCR In multiplex PCR, two or more primer sets are present in the reaction tube or well. Each set amplifies a specific target or endogenous control. Typically, a probe labeled with FAM[™] dye detects the target and a probe labeled with VIC[®] dye detects the endogenous control.

IMPORTANT! SYBR® Green reagents cannot be used for multiplex PCR.

1- and 2-Step RT-PCR You can perform reverse transcription (RT) and PCR in a single reaction (1-step) or in separate reactions (2-step). The reagent configuration you use depends on whether you are performing 1- or 2-step RT-PCR:

- 1-step RT-PCR- In 1-step RT-PCR, RT and PCR take place in one buffer system. Using one buffer system provides the convenience of a single-tube preparation for RT and PCR amplification. However, you cannot use Fast PCR master mix or the carryover prevention enzyme, AmpErase[®] UNG (uracil-N-glycosylase), to perform 1-step RT-PCR.
- **2-step RT-PCR** 2-step RT-PCR is performed in two separate reactions: First, total RNA is reverse-transcribed into cDNA, then the cDNA is amplified by PCR. This method is useful for detecting multiple transcripts from a single cDNA template or for storing cDNA aliquots for later use. The AmpErase[®] UNG enzyme can be used to prevent carryover contamination.

Note: The Standard Curve example experiment is designed for singleplex PCR, where every well contains a primer/probe set for a single target; the reactions are set up for a 2-step RT-PCR.

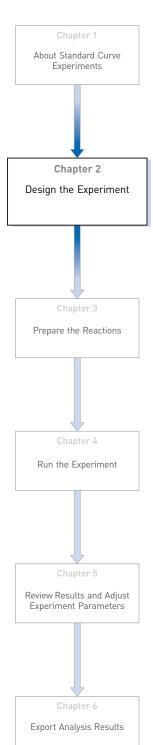
About the example experiment

To illustrate how to perform Standard Curve experiments, this guide leads you through the process of designing and performing an example experiment. The example experiment represents a typical setup that you can use to quickly familiarize yourself with the $ViiA^{TM}$ 7 System.

The objective of the Standard Curve example experiment is to determine the quantity of the RNase P gene in two populations.

In the standard curve example experiment:

- The samples are genomic DNA isolated from two populations.
- The target is the RNase P gene.
- One standard curve is set up for the RNase P gene (target). The standard used for the standard dilution series contains known quantities of the RNase P gene.
 Because a single target is being studied, only one standard curve is required.


Note: In experiments where multiple targets are being studied, a standard curve is required for each target.

- Three replicates of each sample and each dilution point in the standard curve are performed to ensure statistical significance.
- The experiment is designed for singleplex PCR, where every well contains a primer/probe set for a single target.
- Reactions are set up for 2-step RT-PCR.
- Primer/probe sets are from Applied Biosystems RNase P assay.

Note: The human RNase P FAMTM dye-labeled MGB probe is not available as a TaqMan[®] Gene Expression Assay. It can be ordered as a Custom TaqMan[®] Gene Expression Assay (PN 4331348).

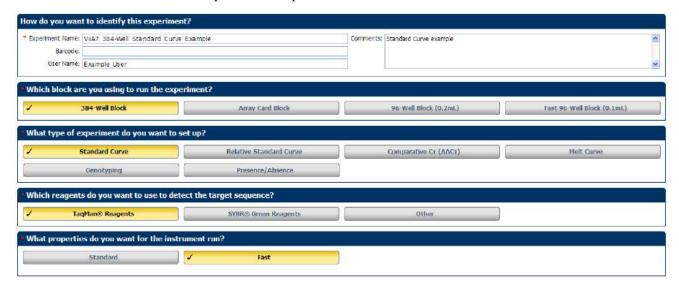
Design the Experiment

This chapter explains how to design the example experiment from the Experiment Setup menu.

This chapter covers:

Define the experiment properties	10
Define targets, samples, and biological replicates	11
Assign targets, samples, and biological groups	12
Set up the run method	15
Order materials for the experiment	16
For more information	16

Note: To automatically export the analyzed data to a specified location, select the Auto Export task from the Export screen, before running the experiment. For more information on Auto Export, refer to Chapter 1 in Booklet 1, *Getting Started with ViiA* $^{\text{TM}}$ 7 *System Experiments*.


Define the experiment properties

Click **Experiment Setup** ▶ **Experiment Properties** to create a new experiment in the ViiATM 7 Software. Enter:

Field or selection	Entry
Experiment Name	ViiA7_384-Well_Standard_Curve_Example
Barcode	Leave field empty
User Name	Example User
Comments	Standard Curve example
Block	384-Well Block
Experiment Type	Standard Curve
Reagents	TaqMan [®] Reagents
Ramp speed	Fast

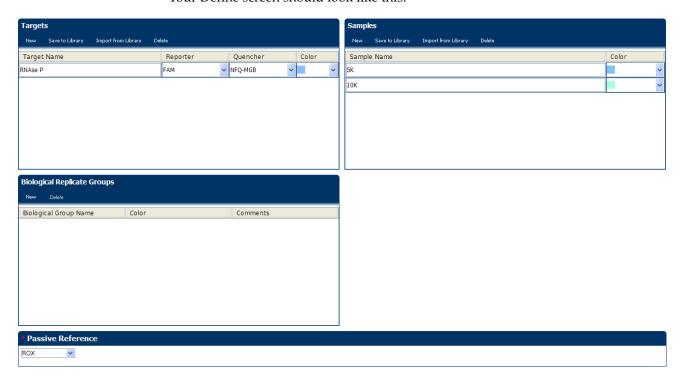
Save the experiment.

Your Experiment Properties screen should look like this:

Define targets, samples, and biological replicates

Click **Define** to access the Define screen. Enter:

1. Targets


Target name	Reporter	Quencher	Color
RNaseP	FAM	NFQ-MGB	

2. Samples

Sample name	Color
5K	
10K	

3. Dye to be used as a Passive Reference ROX

Your Define screen should look like this:

Note: This example experiment does not define biological replicate groups. Leave Biological Replicate Groups blank.

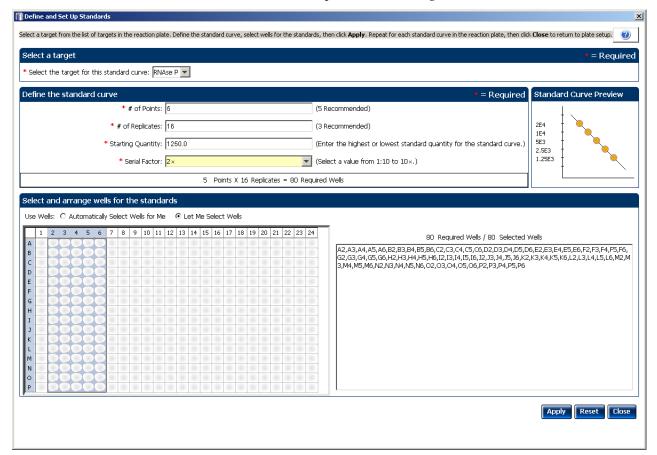
Assign targets, samples, and biological groups

Click **Assign** to access the Assign screen.

- 1. Define and set up standards.
 - a. Click **Define and Set Up Standards** on the Assign screen.
 - **b.** Select a target.

Field	Select
Select a target for this standard curve	RNaseP

c. Define the standard curve.

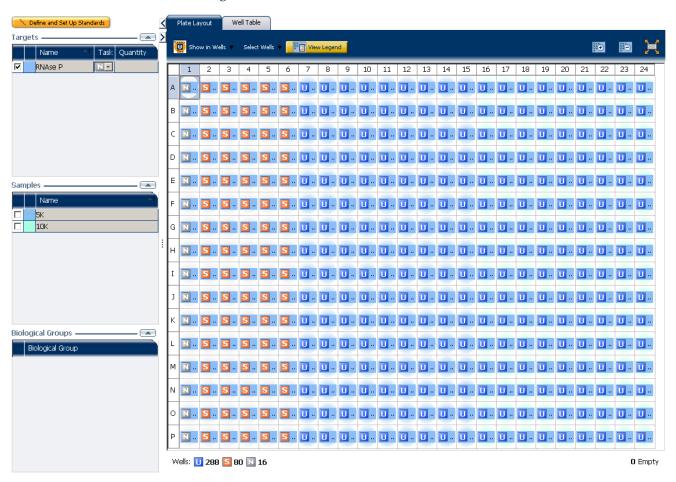

Field	Enter
# of Points	5
# of Replicates	16
Starting Quantity	1250.0
Serial Factor	2x

d. Select and arrange wells for the standards.

Field	Select
Use Wells	Let Me Select Wells

e. Click Apply, and then Close.

Your Define and Set Up Standards dialog box should look like this:

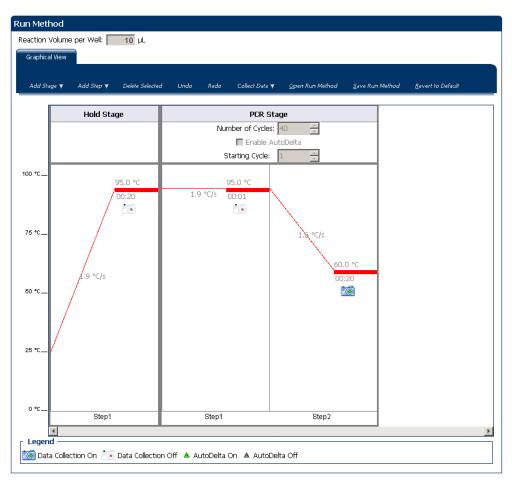


2. Assign targets and samples.

Target name	Well number	Task	Quantity	Sample name
RNaseP	A1 - P1 (column 1)	Negative	None	None
RNaseP	A2 - P2 (column 2)	Standard	1250	None
RNaseP	A3 - P3 (column 3)	Standard	2500	None
RNaseP	A4 - P4 (column 4)	Standard	5000	None
RNaseP	A5 - P5 (column 5)	Standard	10000	None
RNaseP	A6 - P6 (column 6)	Standard	20000	None

Target name	Well number	Task	Quantity	Sample name
RNaseP	A7 - P15 (columns 7 -15)	Unknown	Determined by run	5K
RNaseP	A16 - P24 (columns1 6 - 24)	Unknown	Determined by run	10K

Your Assign screen should look like this:

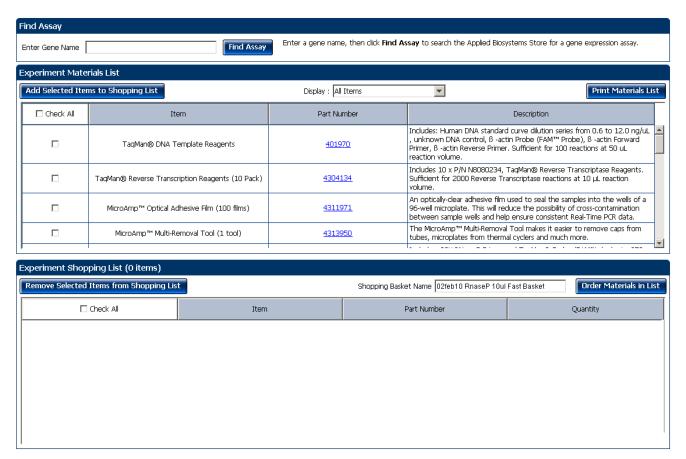

Set up the run method

Click **Run Method** to access the Run Method screen. Set the thermal profile under the Graphical View tab. Enter:

- Reaction Volume Per Well: 10µl
- Thermal Profile

Stage	Step	Ramp rate	Temperature	Time
Hold Stage	Step 1	1.9 °C/s	95°C	20 seconds
PCR Stage	Step 1	1.9 °C/s	95°C	1 second
Number of Cycles: 40 (default)	Step 2	1.6 °C/s	60°C	20 seconds
Enable AutoDelta: Unchecked (default)				
Starting Cycle: Disabled when Enable AutoDelta is unchecked				

Your Run Method screen should look like this:

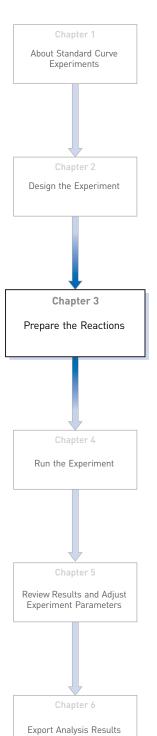

Order materials for the experiment

The recommended materials are:

- MicroAmp® Optical 384-Well Reaction Plate
- MicroAmp® Optical Adhesive Film
- TaqMan® Fast Universal PCR Master Mix
- Applied Biosystems RNase P assay (PN 4316831)

Note: The human RNase P FAMTM dye-labeled MGB probe is not available as a TaqMan[®] Gene Expression Assay. It can be ordered as a Custom TaqMan[®] Gene Expression Assay (PN 4331348).

Your Materials list screen should look like this:


For more information

For more information on	Refer to	Part number
Consumables	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments	4441434
	Appendix A in Booklet 7, ViiA [™] 7 System Experiments - Appendixes	

For more information on	Refer to	Part number
Using other quantification methods	Booklet 3, Running Relative Standard Curve and Comparative C_{T} Experiments.	4441434
Amplification efficiency	Amplification Efficiency of TaqMan [®] Gene Expression Assays Application Note	127AP05-03
Using Alternative Setup	Chapter 2 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434

Prepare the Reactions

This chapter explains how to prepare the PCR reactions for the Standard Curve example experiment.

This chapter covers:

Assemble required materials	20
Prepare the sample dilutions	20
Prepare the standard dilution series	21
Prepare the reaction mix ("cocktail mix")	21
Prepare the reaction plate	22
For more information.	25

Assemble required materials

- Items listed in Booklet 1, Getting Started with ViiA™ 7 System Experiments
- Samples Human Raji cell line-derived cDNA samples (100 ng/μL)
- Example experiment reaction mix components:
 - TaqMan® Fast Universal PCR Master Mix
 - RNase P Assay Mix (20×) (PN 4316831)

Prepare the sample dilutions

To determine the quantity of the RNase P gene in the example experiment, dilute the samples (as directed below) before adding the samples to the final reaction mix.

The stock concentration of each sample is 100 ng/ μ L. After dilution, the sample Pop1 has a concentration of 6.6 ng/ μ L and Pop 2 has a concentration of 3.3 ng/ μ L. Add 2 μ L to each reaction.

Use this table for sample dilution volumes for the example experiment.

Sample name	Stock concentration (ng/µL)	Sample volume (µL)	Diluent volume (µL)	Total volume of diluted sample (µL)
Pop1	100.0	25	355	380
Pop2	100.0	12.5	367.5	380

Note: For your own experiment, adjust the input amounts of the template depending on the template type and target abundance.

- 1. Label a separate microcentrifuge tube for each diluted sample:
 - Pop 1
 - Pop 2
- 2. Add the required volume of water (diluent) to each empty tube:

Tube	Sample name	Diluent volume (µL)
1	Pop 1	355
2	Pop 2	367.5

3. Add the required volume of sample stock to each tube:

Tube	Sample name	Sample volume (µL)
1	Pop 1	25

Tube	Sample name	Sample volume (µL)
2	Pop 2	12.5

- **4.** Vortex each diluted sample for 3 to 5 seconds, then centrifuge the tubes briefly.
- **5.** Place the diluted samples on ice until you prepare the reaction plate.

Prepare the standard dilution series

The standard concentration in stock is 20,000 copies/µL:

Standard name (labeled tube)	Dilution point	Source	Source volume (µL)	Diluent volume (µL)	Total volume (µL)	Standard concentration (copies/µL)
RNase P Std. 1	1 (20,000)	Stock	18	18	36	10,000
RNase P Std. 1	2 (10,000)	Dilution 1	18	18	36	5,000
RNase P Std. 1	3 (5,000)	Dilution 2	18	18	36	2,500
RNase P Std. 1	4 (2500)	Dilution 3	18	18	36	1250
RNase P Std. 1	5 (1250)	Dilution 4	18	18	36	625

1. Prepare five standard dilutions:

Note: For dilution 1, first vortex the stock for 3 to 5 seconds, then centrifuge the RNase P Std. 1 tube briefly before pipetting stock into the tube.

For each dilution:

- **a.** Use a new pipette tip to add 18 μL of source to the tube containing the standard.
- **b.** Vortex the tube for 3 to 5 seconds, then centrifuge the tube briefly.
- **2.** Place the standards on ice until you prepare the reaction plate.

Prepare the reaction mix ("cocktail mix")

For the RNase P assay (Standard Curve example experiment), the following table lists the universal assay conditions (volume and final concentration) for using the TaqMan[®] Fast Universal PCR Master Mix.

Reaction component	Volume for 1 reaction (µL)	Volume for 384 reactions + 10% excess (µL)	
TaqMan [®] Fast Universal PCR Master Mix Kit	5	2115	
RNase P Assay (20X)	0.5	211.5	
Water	3.5	1480.5	
Total reaction mix volume	9	3807	

- 1. Label an appropriately sized tube for the reaction mix: RNase P Reaction Mix.
- **2.** Add the required volumes of each cocktail mix component to the tube.

Note: Do not add the sample or standard at this time.

- **3.** Mix the cocktail thoroughly by gently pipetting up and down several times, then cap the tube.
- **4.** Centrifuge the tube briefly to remove air bubbles.
- **5.** Place the cocktail mix on ice until you prepare the reaction plate.

Note: You can separately add the sample to the reaction plate, as opposed to preparing individual reaction mixes for each sample.

Prepare the reaction plate

Example experiment reaction plate components

The reaction plate for the Standard Curve example experiment contains:

- A MicroAmp® Optical 384-Well Reaction Plate
- Reaction volume: 10 µL/well
- 288 Unknown wells U
- 80 Standard wells S
- 16 Negative control wells N

The plate layout looks like this:

To prepare the reaction plate components

- 1. Prepare the negative control reactions for the target:
 - **a.** To an appropriately sized tube, add the volumes of reaction mix and water listed below.

Tube	Reaction mix	Reaction mix volume (µL)	Water volume (μL)	
1	RNase P reaction mix	157.5	17.5	

- **b.** Mix the reaction by gently pipetting up and down, then cap the tube.
- **c.** Centrifuge the tube briefly to remove air bubbles.
- **d.** Add 10 μ L of the negative control reaction to the appropriate wells in the reaction plate.

Chapter 3 Prepare the Reactions Prepare the reaction plate

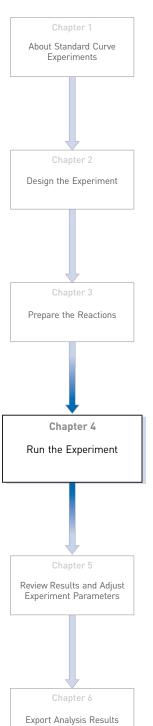
- **2.** For each replicate group, prepare the standard reactions:
 - **a.** To appropriately sized tubes, add the volumes of reaction mix and standard listed below.

Tube	Standard reaction	Reaction mix	Reaction mix volume (μL)	Standard	Standard volume (μL)
1	RNase P Std 1	RNase P reaction mix	157.5	RNase P Std 1	17.5
2	RNase P Std 2	RNase P reaction mix	157.5	RNase P Std 2	17.5
3	RNase P Std 3	RNase P reaction mix	157.5	RNase P Std 3	17.5
4	RNase P Std 4	RNase P reaction mix	157.5	RNase P Std 4	17.5
5	RNase P Std 5	RNase P reaction mix	157.5	RNase P Std 5	17.5

- **b.** Mix the reactions by gently pipetting up and down, then cap the tubes.
- **c.** Centrifuge the tubes briefly to remove air bubbles.
- d. Add 10 μL of the standard reaction to the appropriate wells in the reaction plate.
- **3.** For each replicate group, prepare the reactions for the unknowns:
 - **a.** To appropriately sized tubes, add the volumes of reaction mix and sample listed below.

Tube	Unknown reaction	Reaction mix	Reaction mix volume (µL)	Sample	Sample volume (μL)
1	RNase P pop1	RNase P reaction mix	1422	pop1	158
2	RNase P pop2	RNase P reaction mix	1422	pop2	158

- **b.** Mix the reactions by gently pipetting up and down, then cap the tubes.
- **c.** Centrifuge the tubes briefly to remove air bubbles.
- d. Add 10 μL of the unknown (sample) reaction to the appropriate wells in the reaction plate.


- **4.** Seal the reaction plate with optical adhesive film.
- **5.** Centrifuge the reaction plate briefly to remove air bubbles.
- **6.** Confirm that the liquid is at the bottom of each well of the reaction plate. If not, centrifuge the reaction plate again at a higher speed and for a longer period of time.
- 7. Until you are ready to perform the run, place the reaction plate at 4 $^{\circ}$ C, in the dark.

For more information

For more information on	Refer to	Part number
Assigning the reaction plate components	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> ™ 7 System Experiments	4441434
Sealing the reaction plate	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434

Run the Experiment

This chapter explains how to run the example experiment on the $ViiA^{\text{TM}}$ 7 Instrument. This chapter covers:

- Monitor the run. 28

IMPORTANT! Run the experiment at the same ambient temperature at which you calibrated the instrument. Extreme variations in ambient temperature can affect the heating and cooling of the instrument and influence experimental results.

IMPORTANT! Do not attempt to open the access door during the run. The door is locked while the ViiATM 7 Instrument is in operation.

Chapter 4 Run the Experiment Start the run

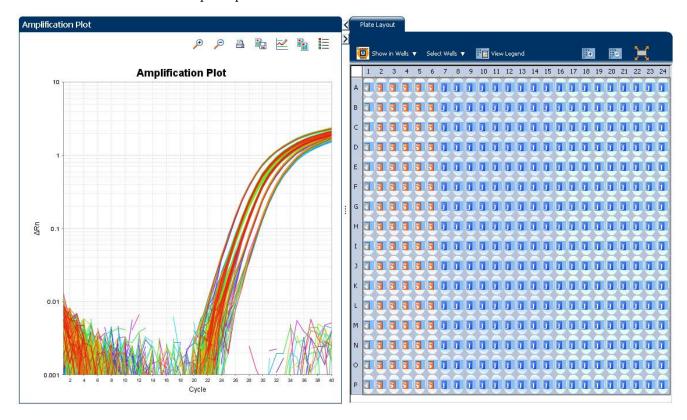
Start the run

- 1. Open the Standard Curve example file that you created using instructions in Chapter 2.
- **2.** Load the reaction plate into the instrument.
- **3.** Start the run.

Monitor the run

Monitor the example experiment run:

- From the ViiATM 7 Software using the Run screen, while the experiment is in progress.
- From the Instrument Console of the ViiATM 7 Software (to monitor an experiment started from another computer or from the ViiATM 7 Instrument touchscreen).
- From the ViiATM 7 Instrument touchscreen.


From the Instrument Console of the ViiA™ 7 Software

- 1. In the Instrument Console screen, select the instrument icon.
- **2.** Click **Manage Instrument** or double-click on the instrument icon.
- **3.** On the Manage Instrument screen, click **Monitor Running Experiment** to access the Run screen.

View the Amplification Plot You can view the progress of the run in real time. During the run, periodically view all the three plots available from the $ViiA^{TM}$ 7 Software for potential problems.

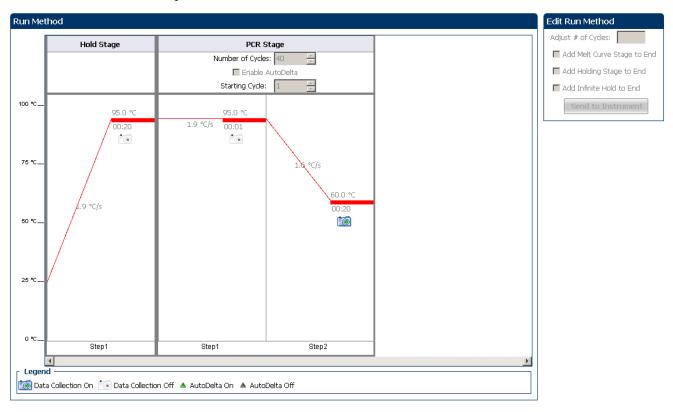
Click **Amplification Plot** from the Run Experiment Menu, select the Plate Layout tab, then select the wells to view.

The figure below shows the Amplification Plot screen as it appears at the end of the example experiment.

View the Temperature Plot

Click **Temperature Plot** from the Run Experiment Menu.

The figure below shows the Temperature Plot screen as it appears during the example experiment.



Note: The Sample temperature displayed in the Current Temperatures group is an estimated value.

30

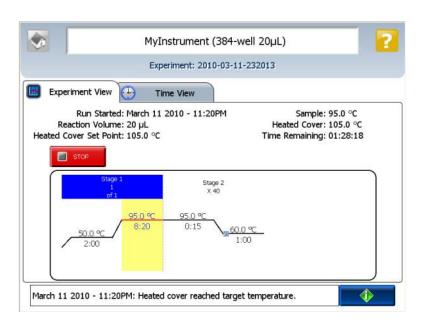
View the Run Method Click **Run Method** from the Run Experiment Menu.

The figure below shows the Run Method screen as it appears in the example experiment.

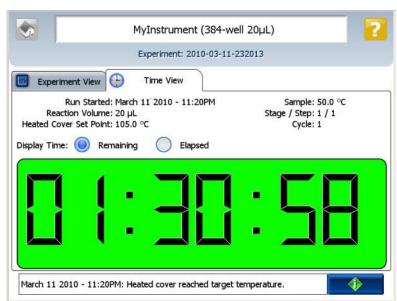
View the run data

Click View Run Data from the Run Experiment Menu.

The figure below shows the View Run Data screen as it appears in the example experiment.

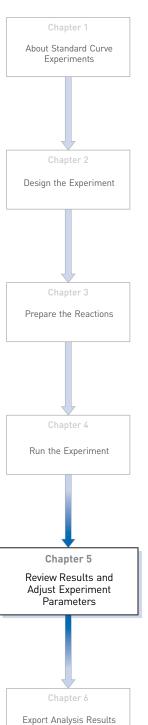


From the ViiA™ 7 Instrument touchscreen


You can also view the progress of the run from the touch screen of the Vii A^{TM} 7 Instrument.

The Run Method screen on the $ViiA^{TM}$ 7 Instrument touchscreen looks like this:

Experiment View



Time View

Review Results and Adjust Experiment Parameters

In Section 5.1 of this chapter you review the analyzed data using several of the analysis screens and publish the data. Section 5.2 of this chapter walks you through the process of modifying experiment parameters to troubleshoot problems with experiment results before rerunning an experiment.

This chapter covers:

Sect	tion 5.1 Review Results	35
	Analyze the example experiment	35
	View the Standard Curve Plot	35
	Assess amplification results using the Amplification Plot	38
	Identify well problems using the Well Table	45
	Confirm accurate dye signal using the Multicomponent Plot	49
	Determine signal accuracy using the Raw Data Plot	51
	Review the flags in the QC Summary	53
	For more information	55
Sec	tion 5.2 Adjust parameters for re-analysis of your own experiments	57
	Adjust analysis settings	57
	$Improve \ C_T \ precision \ by \ omitting \ wells. \\ \\ \\$	61
	For more information	62

Section 5.1 Review Results

Analyze the example experiment

- 1. Open the example experiment file that you ran in Chapter 4.
- Click Analyze. The software analyzes the data using the default analysis settings.Note: You can also access the experiment to analyze from the Home screen.

View the Standard Curve Plot

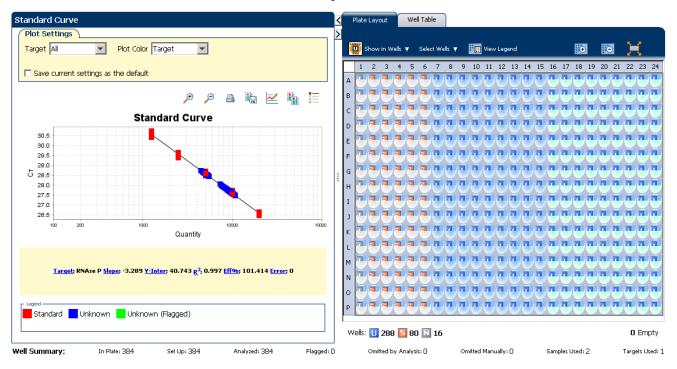
The Standard Curve Plot screen displays the standard curve for samples designated as standards. The ViiA™ 7 Software calculates the quantity of an unknown target from the standard curve.

Purpose

The purpose of viewing the standard curve for the example experiment is to identify:

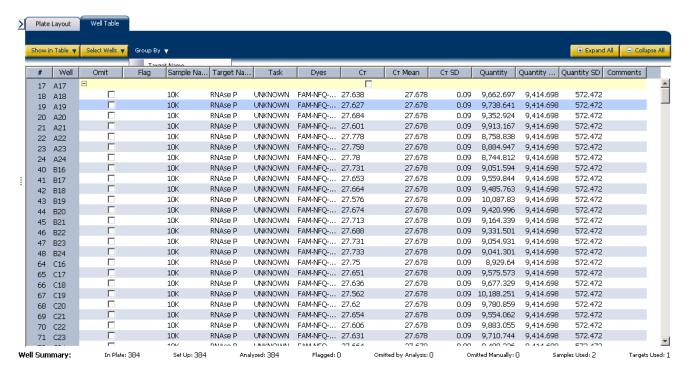
- Slope and amplification efficiency
- R² value (correlation coefficient)
- C_T values

To view and assess the Standard Curve Plot


- From the Experiment Menu pane, select Analysis > Standard Curve.
 Note: If no data are displayed, click Analyze.
- **2.** Display all 384 wells in the Standard Curve Plot screen by clicking the upper left corner of the plate layout in the **Plate Layout** tab.
- **3.** Enter the Plot Settings:

Menu	Selection
Target	All
Plot Color	Target
	Check (default)
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend .)	

4. View the values displayed below the standard curve.


Menu	Selection
Slope	-3.289
R2	0.997
Amplification efficiency	101.414%
Error	0

5. Check that all samples are within the standard curve. In the example experiment, as shown below, all samples (blue dots) are within the standard curve (red dots).

- **6.** Check the C_T values:
 - a. Click the Well Table tab.
 - **b.** From the Group By menu, select **Replicate**.

c. Look at the values in the C_T column. In the example experiment, the C_T values fall within the expected range (>8 and < 35).

Tips for analyzing your own experiments

When you analyze your own standard curve experiment, look for:

- Slope and amplification efficiency values The amplification efficiency is calculated using the slope of the regression line in the standard curve. A slope close to –3.3 indicates optimal, 100% PCR amplification efficiency. Factors that affect amplification efficiency:
 - Range of standard quantities For accurate and precise efficiency measurements, use a broad range of standard quantities, 5 to 6 logs (10⁵ to 10⁶ fold).
 - Number of standard replicates For accurate efficiency measurements, include replicates to decrease the effects of pipetting inaccuracies.
 - PCR inhibitors PCR inhibitors in the reaction can reduce amplification efficiency.
- **R**² **values** (**correlation coefficient**) The R² value is a measure of the closeness of fit between the regression line and the individual C_T data points of the standard reactions. A value of 1.00 indicates a perfect fit between the regression line and the data points. An R² value >0.99 is desirable.
- **C**_T **values** The threshold cycle (C_T) is the PCR cycle number at which the fluorescence level meets the threshold.
 - A C_T value >8 and <35 is desirable.
 - A C_T value <8 indicates that there is too much template in the reaction.
 - A C_T value >35 indicates a low amount of target in the reaction; for C_T values
 >35, expect a higher standard deviation.

If your experiment does not meet the guidelines above, troubleshoot as follows:

- Omit wells (see "Improve C_T precision by omitting wells" on page 61).
 Or
- Rerun the experiment.

Assess amplification results using the Amplification Plot

Amplification plots available for viewing

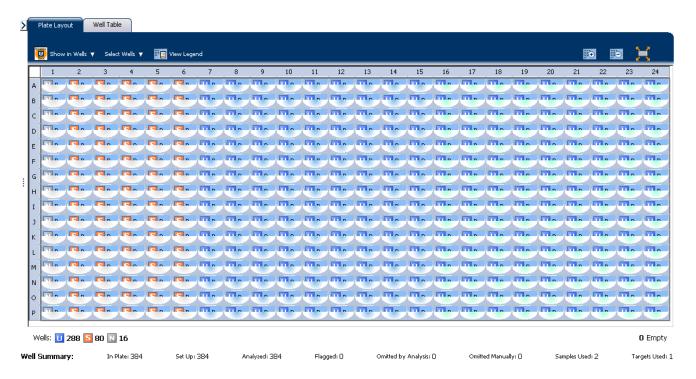
The Amplification Plot screen displays amplification of all samples in the selected wells. There are three plots available:

- ΔRn vs Cycle ΔRn is the magnitude of normalized fluorescence signal generated by the reporter at each cycle during the PCR amplification. This plot displays ΔRn as a function of cycle number. Use this plot to identify and examine irregular amplification and to view threshold and baseline values for the run.
- Rn vs Cycle Rn is the fluorescence signal from the reporter dye normalized to
 the fluorescence signal from the passive reference. This plot displays Rn as a
 function of cycle number. Use this plot to identify and examine irregular
 amplification.
- C_T vs Well C_T is the PCR cycle number at which the fluorescence meets the
 threshold in the amplification plot. This plot displays C_T as a function of well
 position. Use this plot to locate outlying amplification (outliers).

Each plot can be viewed as a linear or log10 graph type.

Purpose

The purpose of viewing the amplification plot for the example experiment is to identify:


- Correct baseline and threshold values
- Outliers

View the Amplification Plot

From the Experiment Menu pane, select Analysis > Amplification Plot.
 Note: If no data are displayed, click Analyze.

2. Display the RNase P wells in the Amplification Plot screen. Click the **Plate Layout** tab. Enter the Plot Settings:

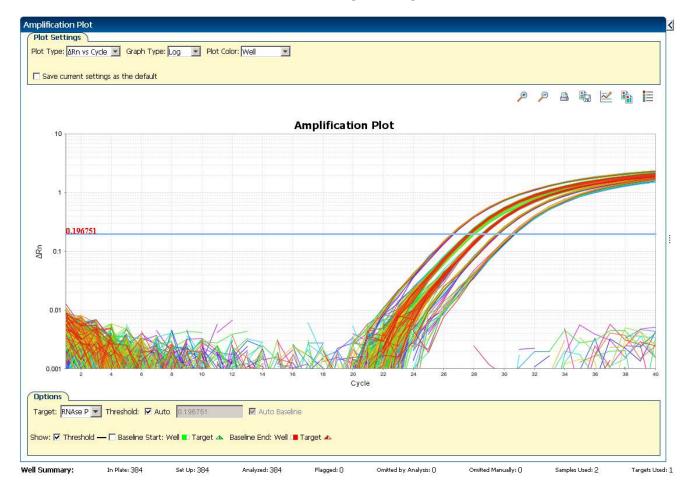
Menu	Selection
Select Wells With	Target ▶ RNaseP

3. In the Amplification Plot screen, enter:

Menu	Select
Plot Type	ΔRn vs Cycle
Plot Color	Well (default)
	Check (default)
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.)	

- **4.** View the baseline values.
 - a. From the Graph Type drop-down menu, select Linear.
 - **b.** Select the **Baseline** check box to show the start cycle and end cycle.

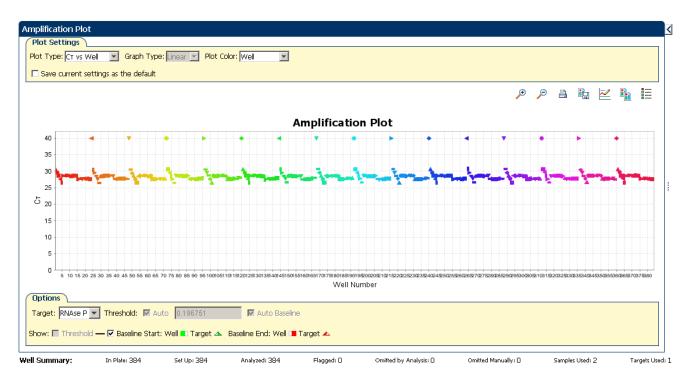
c. Verify that the baseline is set correctly: The end cycle should be set a few cycles before the cycle number where significant fluorescent signal is detected. In the example experiment, the baseline is set correctly.



5. View the threshold values.

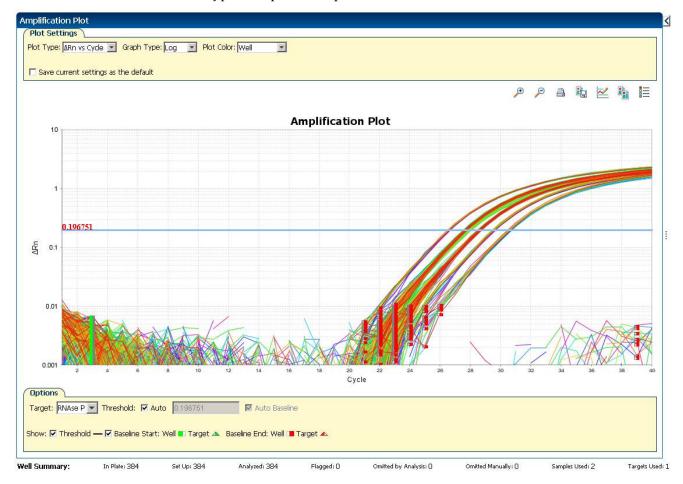
Menu	Select
Graph Type	Log
Target	RNaseP

a. Select the **Threshold** check box to show the threshold.


b. Verify that the threshold is set correctly. In the example experiment, the threshold is in the exponential phase.

- **6.** Locate outliers:
 - **a.** From the Plot Type drop-down menu, select C_T vs Well.

b. Look for outliers from the amplification plot. In the example experiment, there are no outliers for RNase P.

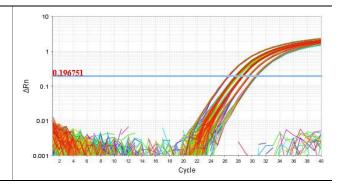

Tips for analyzing your own experiments

When you analyze your own standard curve experiment, look for:

Outliers

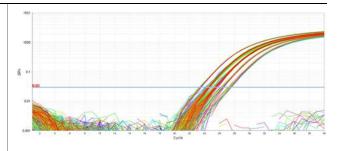
- A typical amplification plot The ViiA™ 7 Software automatically calculates baseline and threshold values based on the assumption that the data exhibit a *typical* amplification plot. A typical amplification plot has four distinct sections:
 - Plateau phase
 - Linear phase
 - Exponential (geometric phase)
 - Baseline

A typical amplification plot should look like this:

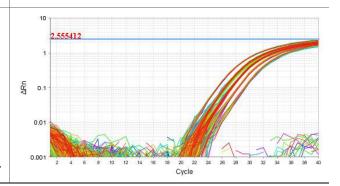

IMPORTANT! Experimental error (such as contamination or pipetting errors) can produce atypical amplification curves that can result in incorrect baseline and threshold value calculations by the ViiATM 7 Software. Applied Biosystems recommends that you examine the Amplification Plot screen and review the assigned baseline and threshold values for each well after analysis.

• Correct threshold values:

Threshold Set Correctly

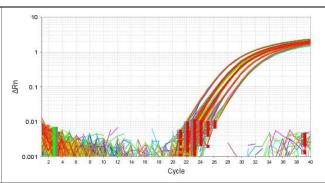

The threshold is set in the exponential phase of the amplification curve.

Threshold settings above or below the optimum increase the standard deviation of the replicate groups.

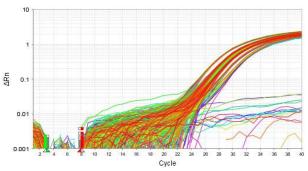

Threshold Set Too Low

The threshold is set below the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar up into the exponential phase of the curve.

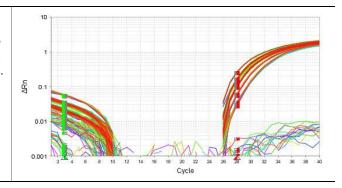
Threshold Set Too High


The threshold is set above the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar down into the exponential phase of the curve.

• Correct baseline values:


Baseline Set Correctly

The amplification curve begins after the maximum baseline.


Baseline Set Too Low

The amplification curve begins too far to the right of the maximum baseline. Increase the End Cycle value.

Baseline Set Too High

The amplification curve begins before the maximum baseline. Decrease the End Cycle value.

If your experiment does not meet the guidelines above, troubleshoot as follows:

- Omit wells (see "Improve C_T precision by omitting wells" on page 61).
 Or
- Manually adjust the baseline and/or threshold (see "Adjust analysis settings" on page 57).

Identify well problems using the Well Table

The Well Table displays data for each well in the reaction plate, including:

- The sample name, target name, task, and dyes
- The calculated threshold cycle (C_T), normalized fluorescence (Rn), and quantity values
- Comments
- Flags

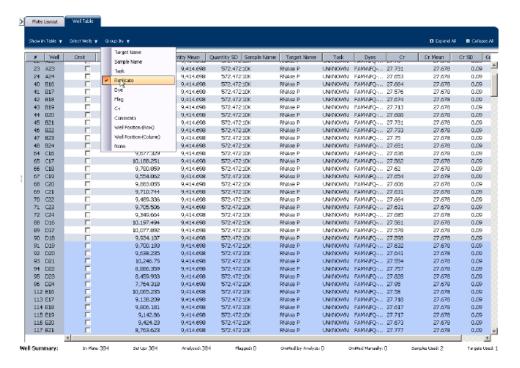
Purpose

The purpose of viewing the well table is to identify:

- Quantity values
- Flags
- C_T values (including C_T standard deviation)

View the well table

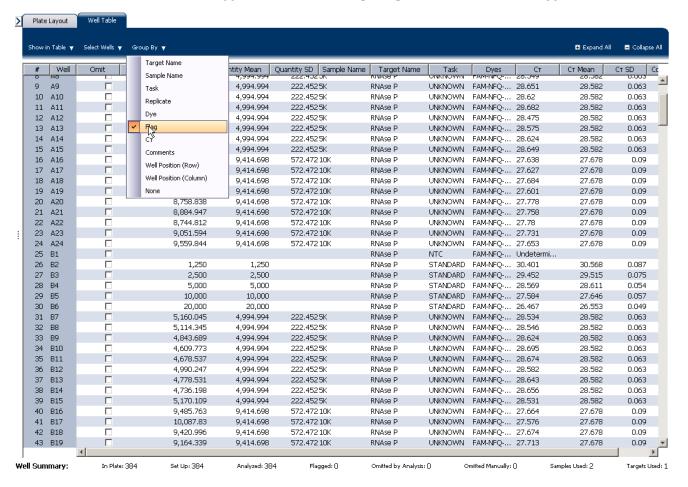
- From the Experiment Menu pane, select Analysis, then select the Well Table tab.
 Note: If no data are displayed, click Analyze.
- **2.** Use the Group By drop-down menu to group wells by a specific category. For the example experiment, group the wells by replicate, flag, or C_T value.


Note: You can select only one category at a time.

To group by replicate

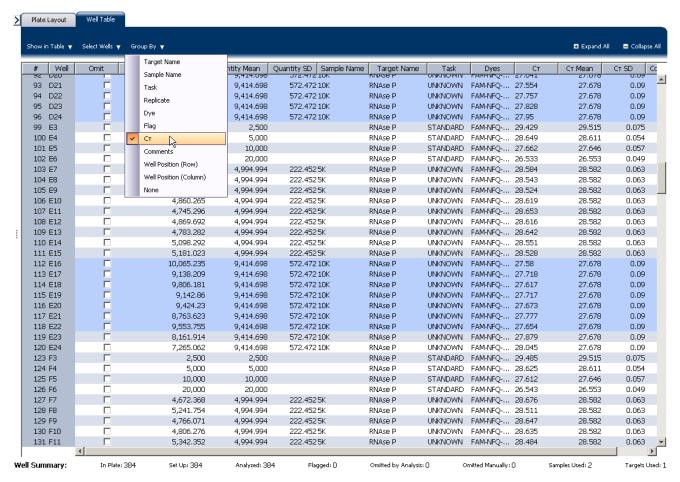
From the Group By drop-down menu, select **Replicate**. The software groups the replicate wells: negative controls, standards, and samples. In the example experiment, note that the quantity values within each replicate group are similar.

Note: In the example experiment, the Quantity, Quantity Mean, and Quantity SD columns have been moved from their default locations to the beginning of the Well Table. To move a column, click and drag on the column heading.



The well table looks like this:

To group by flag


From the Group By drop-down menu, select **Flag**. The software groups the flagged and unflagged wells. In the example experiment, there are no flagged wells.

To group by C_T value

From the Group By drop-down menu, select C_T . The software groups the wells by C_T value: low, medium, high, and undetermined. In the example experiment, the C_T values are within the expected range (>8 and <35).

Tips for analyzing your own experiments

- Replicate The software groups the wells by replicate: negative controls, standards, and samples. Look in the Quantity columns to make sure the quantity values for each replicate group are similar indicating tight C_T precision.
- **Flag** The software groups the flagged and unflagged wells. A flag indicates that the software has found a potential error in the flagged well. For a description of the ViiATM 7 Software flags, see "Flag Settings" on page 59.
- C_T The threshold cycle (C_T) is the PCR cycle number at which the fluorescence level meets the threshold. A C_T value >8 and <35 is desirable. A C_T value <8 indicates that there is too much template in the reaction. A C_T value >35 indicates a low amount of target in the reaction; for C_T values >35, expect a higher standard deviation.

Confirm accurate dye signal using the Multicomponent Plot

The Multicomponent Plot screen displays the complete spectral contribution of each dye in a selected well over the duration of the PCR run.

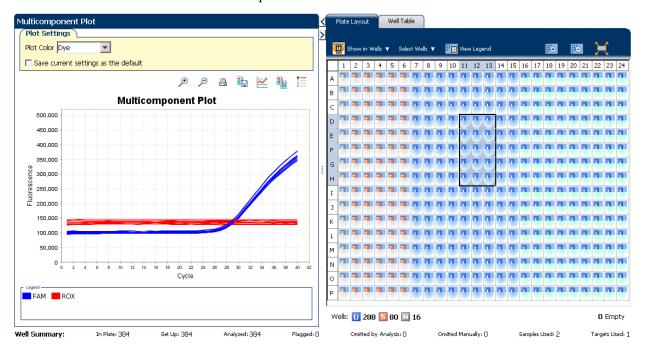
Purpose

In the standard curve example experiment, you review the Multicomponent Plot screen for:

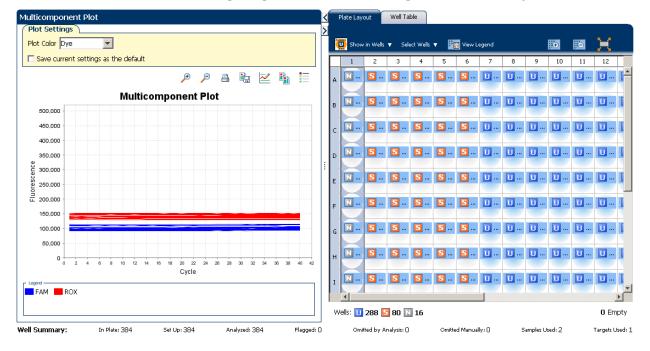
- ROXTM dye (passive reference)
- FAMTM dye (reporter)
- Spikes, dips, and/or sudden changes
- · Amplification in the negative control wells

View the Multicomponent Plot

- From the Experiment Menu pane, select Analysis ▶ Multicomponent Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display the unknown and standard wells one at a time in the Multicomponent Plot screen:
 - a. Click the **Plate Layout** tab.
 - **b.** Select one well in the plate layout; the well is shown in the Multicomponent Plot screen.


Note: If you select multiple wells, the Multicomponent Plot screen displays the data for all selected wells simultaneously.

- **3.** From the Plot Color drop-down menu, select **Dye**.
- **4.** Click **Show a legend for the plot** (default).


Note: This is a toggle button. When the legend is displayed, the button changes to **Hide the plot legend**.

5. Check the ROX dye signal. In the example experiment, the ROX dye signal remains constant throughout the PCR process; a constant ROX dye signal indicates typical data.

6. Check the FAM dye signal. In the example experiment, the FAM dye signal increases throughout the PCR process; increase in FAM dye signal indicates normal amplification.

7. Select the negative control wells one at time and check for amplification. In the example experiment, there is no amplification in the negative control wells.

Tips for confirming dye accuracy in your own experiment

When you analyze your own standard curve experiment, look for:

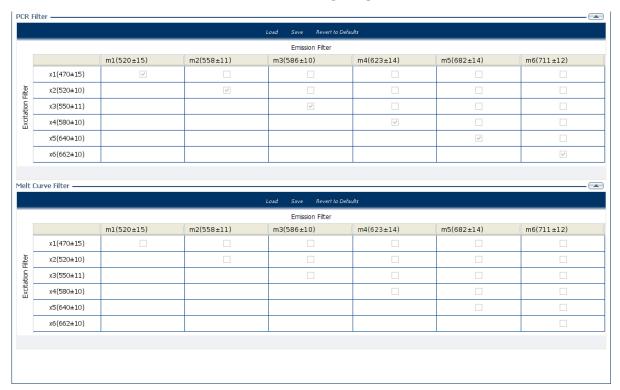
- **Passive reference** The passive reference dye fluorescence level should remain relatively constant throughout the PCR process.
- **Reporter dye** The reporter dye fluorescence level should display a flat region corresponding to the baseline, followed by a rapid rise in fluorescence as the amplification proceeds.
- Irregularities in the signal There should not be any spikes, dips, and/or sudden changes in the fluorescent signal.
- Negative control wells There should not be any amplification in the negative control wells.

Determine signal accuracy using the Raw Data Plot

The Raw Data Plot screen displays the raw fluorescence signal (not normalized) for each optical filter for the selected wells during each cycle of the real-time PCR.

Purpose

In the standard curve example experiment, you review the Raw Data Plot screen for a stable increase in signal (no abrupt changes or dips) from the appropriate filter.


View the Raw Data Plot

- From the Experiment Menu pane, select Analysis ➤ Raw Data Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display all 384 wells in the Raw Data Plot screen by clicking the upper left corner of the plate layout in the Plate Layout tab.
- 3. Click Show a legend for the plot (default). The legend displays the color code for each row of the reaction plate (see the legend in the Raw Data Plot shown below).

4. Click and drag the Show Cycle pointer from cycle 1 to cycle 40. In the example experiment, there is a stable increase in signal from filter 1, which corresponds to the FAM[™] dye filter.

The filters used for the example experiment are:

Tips for determining signal accuracy in your own experiments

When you analyze your own standard curve experiment, look for the following in each filter:

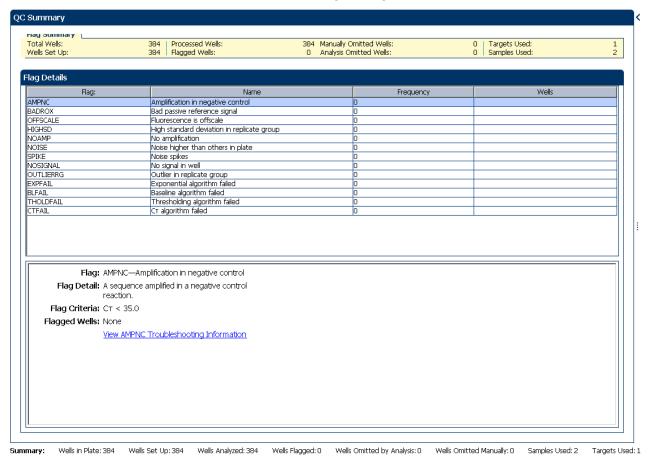
- · Characteristic signal growth
- No abrupt changes or dips

Review the flags in the QC Summary

The QC Summary screen displays a list of the ViiA[™] 7 Software flags, including the flag frequency and location for the open experiment.

View the QC Summary

- From the Experiment Menu pane, select Analysis ➤ QC Summary.
 Note: If no data are displayed, click Analyze.
- 2. Review the Flags Summary.


Note: A 0 displayed in the Frequency column indicates that the flag does not appear in the experiment. If the frequency is >0, the flag appears somewhere in the experiment; the well position is listed in the Wells column.

In the example experiment, there are no flagged wells.

3. In the Flag Details table, click each flag with a frequency >0 to display detailed information about the flag. In the example experiment, the Frequency column displays 0 for all flags.

5

4. (*Optional*) For those flags with frequency >0, click the troubleshooting link to view information on correcting the flag.

Possible flags

The flags listed below may be triggered by the experiment data.

Note: To change the flag settings, refer to "Flag Settings" on page 59.

Flag	Description
Pre-processing flag	
OFFSCALE	Fluorescence is offscale
Primary analysis flags	
BADROX	Bad passive reference signal
NOAMP	No amplification
NOISE	Noise higher than others in plate
SPIKE	Noise spikes
NOSIGNAL	No signal in well
EXPFAIL	Exponential algorithm failed

Flag	Description	
BLFAIL	Baseline algorithm failed	
THOLDFAIL	Thresholding algorithm failed	
CTFAIL	C _T algorithm failed	
Secondary analysis flags		
OUTLIERRG	Outlier in replicate group	
AMPNC	Amplification in negative control	
HIGHSD	High standard deviation in replicate group	

Note: When you use the Relative Threshold algorithm, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag).

For more information

For more information on	Refer to	Part number
Publishing data	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments	4441434

Chapter 5 Review Results and Adjust Experiment Parameters For more information

Section 5.2 Adjust parameters for re-analysis of your own experiments

Adjust analysis settings

The Analysis Settings dialog box displays the analysis settings for the threshold cycle (C_T) , flags, and advanced options.

If the default analysis settings in the ViiATM 7 Software are not suitable for your own experiment, you can change the settings in the Analysis Settings dialog box, then reanalyze your experiment.

View the analysis settings

- 1. From the Experiment Menu pane, select **Analysis**.
- **2.** Click **Analysis** ▶ **Analysis Settings** to open the Analysis Settings dialog box. In the example experiment, the default analysis settings are used for each tab:
 - C_T Settings
 - Flag Settings
 - Advanced Settings
 - Standard Curve Settings

The Analysis Settings dialog box for a Standard Curve experiment looks like this:

3. View and, if necessary, change the analysis settings (see "Adjust analysis settings" below).

Note: You can save the changes to the analysis settings to the Analysis Settings Library for later use. For more information, see About the Analysis Settings Library in Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments*.

Click Apply Analysis Settings to apply the current analysis settings.

Note: You can go back to the default analysis settings, by clicking **Revert to Default Analysis Settings**.

Adjust analysis settings

C_T Settings

Data Step Selection

Use this feature to select one stage/step combination for C_T analysis when there is more than one data collection point in the run method.

Algorithm Settings

You can select the algorithm that determines the C_T values. There are two algorithms: Baseline Threshold (the default) and Relative Threshold.

The Baseline Threshold algorithm is an expression estimation algorithm that subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

The Relative Threshold algorithm lets you compare the data on a per-well or pertarget basis. This setting is ideal for analyzing a single gene across samples or a single sample across genes with no dependence on targets, thereby reducing variability. Any settings for baseline or threshold do not affect the analysis when you use the Relative Threshold algorithm.

Default C_T Settings

Use the default C_T settings feature to calculate C_T for the targets that do not have custom settings. To edit the default settings, click **Edit Default Settings**.

• C_T Settings for Target

When you manually set the threshold and baseline, Applied Biosystems recommends:

Setting	Recommendation
Threshold	Enter a value for the threshold so that the threshold is:
	Above the background.
	Below the plateau and linear regions of the amplification curve.
	Within the exponential phase of the amplification curve.
Baseline	Select the Start Cycle and End Cycle values so that the baseline ends before significant fluorescent signal is detected.

Note: This setting is applicable only to the Baseline Threshold algorithm.

Note: Selecting Automatic Threshold implies selection of automatic setting of the baseline. However, if Automatic Threshold is deselected, then you can choose between setting the baseline either automatically or manually.

Flag Settings

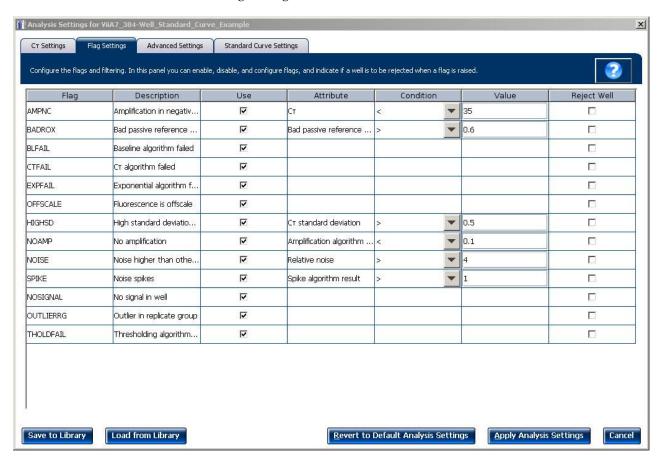
Use the Flag Settings tab to:

- Adjust the sensitivity so that more wells or fewer wells are flagged.
- Change the flags that are applied by the ViiATM 7 Software.

To adjust the flag settings:

- 1. In the Use column, select the check boxes for flags to apply during analysis.
- **2.** (*Optional*) If an attribute, condition, and value are listed for a flag, specify the setting for applying the flag.

Note: If you choose to adjust the setting for applying a flag, make minor adjustments as you evaluate the appropriate setting.


3. In the Reject Well column, select the check boxes if you want the software to reject wells with the flag.

Note: After you have rejected the flagged wells, analysis results depend on factors such as the experiment type and flag type. For example, rejecting wells flagged by HIGHSD in experiments using the Standard Deviation calculations may change the result of C_T SD. For some flags, analysis results calculated before the well is rejected are maintained.

4. Click **Apply Analysis Settings** in the Analysis Settings dialog box. If the run status is complete, the data are reanalyzed.

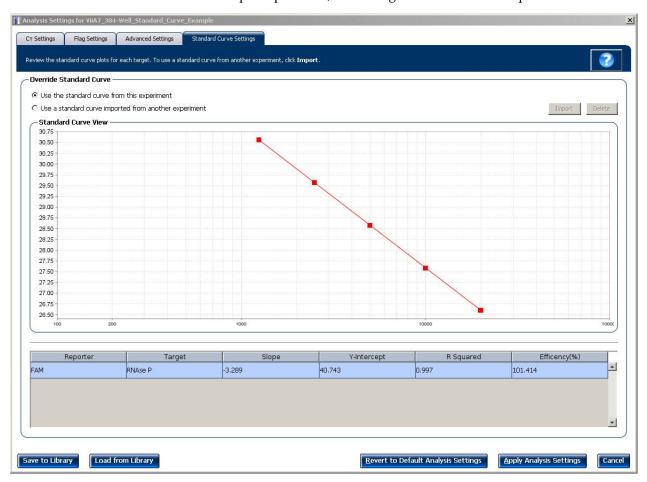
The Flag Settings tab looks like this:

Advanced Settings

Use the Advanced Settings tab to change baseline settings well-by-well.

Note: The baseline and threshold values do not affect the analysis using the Relative Threshold algorithm.

To use custom baseline settings for a well-target combination:

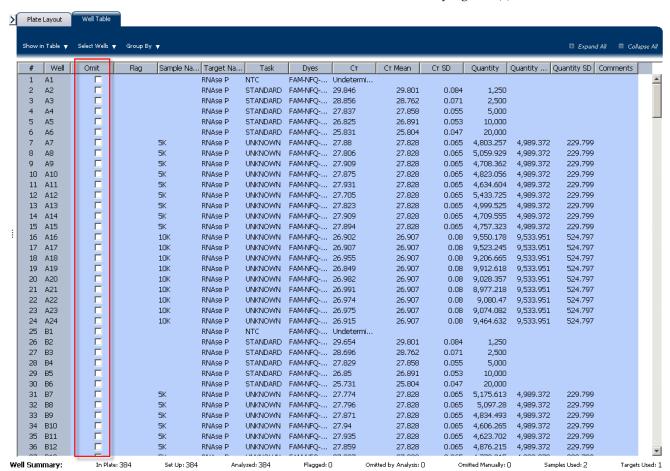

- 1. Select one or more well-target combinations in the table.
- **2.** Deselect the **Use** C_T **Settings Defined for Target** check box.
- **3.** Define the custom baseline settings:
 - For automatic baseline calculations, select the **Automatic Baseline** check box.
 - To define the baseline, deselect the **Automatic Baseline** check box, then enter the baseline start cycle and baseline end cycle.

Standard Curve Settings

Use this tab to review the settings of the current standard curve experiment or to import the standard curve from an external experiment (with the same samples and targets) and apply it to the current experiment.

Note: The run method must be the same. Applied Biosystems recommends using the standard curve from the current experiment.

For the example experiment, the settings from the current experiment have been used.

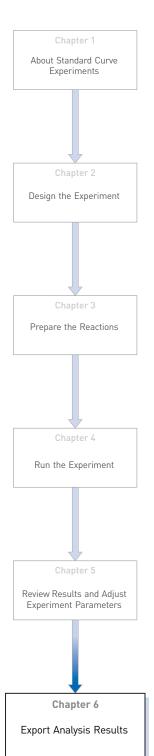

Improve C_T precision by omitting wells

Experimental error may cause some wells to be amplified insufficiently or not at all. These wells typically produce C_T values that differ significantly from the average for the associated replicate wells. If included in the calculations, these outliers can result in erroneous measurements; to ensure C_T precision, omit the outliers from the analysis.

- From the Experiment Menu pane, select Analysis ➤ Amplification Plot.
 Note: If no data are displayed, click Analyze.
- **2.** In the Amplification Plot screen, select C_T vs Well from the Plot Type drop-down menu.
- 3. Select the Well Table tab.

- **4.** In the Well Table, view outliers:
 - a. From the Group By drop-down menu, select Replicate.
 - **b.** Look for any outliers in the replicate group (make sure they are flagged).
 - **c.** Select the **Omit** check box next to outlying well(s), as shown below.

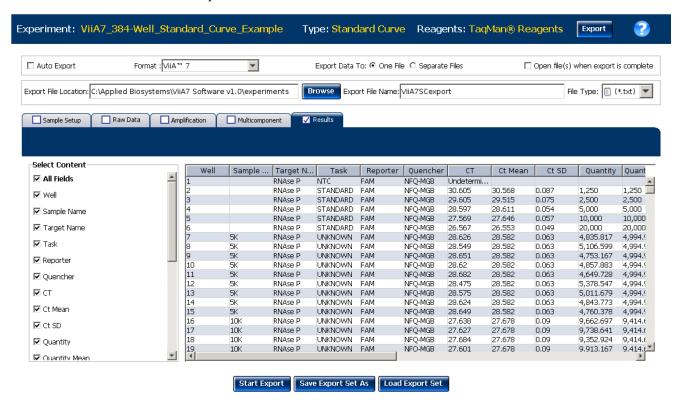
5. Click **Analyze** to reanalyze the experiment data with the outlying well(s) removed from the analysis.


Note: You can also omit undesirable wells in an experiment from the Plate Layout screen. To omit a well from the Plate Layout screen, right-click the well and select **Omit**.

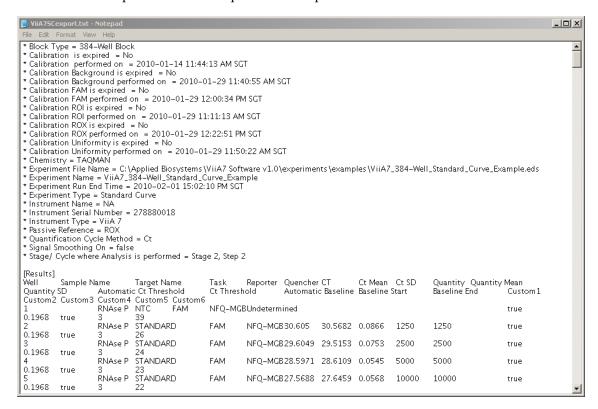
For more information

For more information on	Refer to	Part number
Amplification efficiency	Amplification Efficiency of TaqMan® Gene Expression Assays Application Note.	127AP05-03

Export Analysis Results



- 1. Open the Standard Curve example experiment file that you analyzed in Chapter 5.
- In the Experiment Menu, click Export.
 Note: To export data automatically after analysis, select the Auto Export check box during experiment setup or before running the experiment. Auto export is
- 3. Select ViiATM7 Format.
- **4.** Complete the Export dialog box as shown below:


unchecked for the example experiment.

Field or Selection	Entry
Select Data to export/ Select Content	Results
Export Data To	One File
Export File Name	ViiA7SCexport
File Type	*.txt
Export File Location	<pre><drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments</drive></pre>

Your Export screen should look like this:

Your exported file when opened in Notepad should look like this:

Index

A	reaction plate 23
absolute quantity 6	correlation coefficient 37
adjusting analysis settings 57	C _T settings
adjusting parameters, re-analyzing own	algorithm settings 58
experiments 57	data step, selecting 58
Advanced Settings tab 60	default 59
Algorithm Settings	target 59
Baseline Threshold 59	C _T Settings tab 58, 55
Relative Threshold 59	
amplification efficiency, factors affecting	D
PCR inhibitors 37	designing experiment
standard quantities 37	assigning targets, samples, and biological
standard replicates 37	groups 12
amplification plot	defining and setting up standards 12
amplification efficiency 17, 37, 62	defining experiment properties 10
assessing amplification results 38	defining targets, samples, and biological
reviewing baseline values 39	replicates 11
reviewing outliers 41	ordering materials 16
reviewing threshold values 40	setting up run method 15
tips for analyzing own experiments 42	dye accuracy
viewing 29, 38	irregularities in the signal 51
AMPNC flag 55	negative control wells 51
analysis results, exporting 63	passive reference 51
Analysis Settings	reporter dye 51
Advanced Settings 57	
C _T Settings 57	E
Flag Settings 57	example experiment 7
Standard Curve Settings 57	experiment properties, defining 10
Analyze	EXPFAIL flag 54
Amplification Plot 38	exporting analysis results 63
Multicomponent Plot 49	exporting analysis results 00
QC Summary 53	E
Raw Data Plot 51	F
Standard Curve Plot 35	Flag Settings tab 59
Well Table 45	flags
Auto Export 63	primary analysis 54
Automatic Threshold 59	flags, QC
	AMPNC 55
В	BADROX 54
BADROX flag 54	BLFAIL 55
baseline values, correcting 44	CTFAIL 55
BLFAIL flag 55	EXPFAIL 54
8	HIGHSD 55
C	NOAMP 54
	NOISE 54
cocktail mix 21	NOSIGNAL 54
components	OFFSCALE 54
reaction mix 20	OUTLIERRG 55

SPIKE 54	standard dilutions 21
THOLDFAIL 55	Pre-processing flag
	OFFSCALE 54
G	Primary analysis flags
	BADROX 54
Group By	BLFAIL 55
C _T value 48	CTFAIL 55
flag 47	EXPFAIL 54
replicate 46	NOAMP 54
	NOISE 54
Н	NOSIGNAL 54
HIGHSD flag 55	SPIKE 54
S	THOLDFAIL 55
L	primer set 6
improving C _T precision, omitting wells 61	Q
M	QC Summary, reviewing flags 53
M	QC summary, viewing 53
multicomponent plot	2
confirming dye accuracy 49	D
tips for analyzing own experiment 51	R
viewing 49	raw data plot
	determining signal accuracy 51
N	tips for analyzing own experiments 53
	viewing 51
NOAMP flag 54	reactions, assembling materials for 20
NOISE flag 54	required components
NOSIGNAL flag 54	negative controls 6
	replicates 6
0	sample 6
OFFSCALE flag 54	standard 6
omitting wells 61	standard dilution series 6
ordering materials 16	reverse transcription 7
	review results 35
OUTLIERRG flag 55	RNase P 7
_	run
P	monitoring 28
PCR options	starting 28
1-step RT-PCR 7	run method
2-step RT-PCR 7	reaction volume per well 15
Multiplex PCR 6	setting up 15
Singleplex PCR 6	thermal profile 15
preparing reactions	viewing 31
reaction mix 21	Run screen
reaction plate 22	Amplification Plot 29
required materials 20	Run Method 31
sample dilutions 20	Temperature Plot 30
standard dilution series 21	View Run Data 31

S sample dilutions, preparing reactions 20 samples, defining 11 Secondary analysis flags AMPNC 55 HIGHSD 55 **OUTLIERRG** 55 SPIKE flag 54 standard 6 standard curve experiments about 5 overview 6 PCR options 6 required components, assemble 6 standard curve plot tips for analyzing own experiment 37 viewing 35 viewing and assessing 35 Standard Curve Settings tab 61 standard curve values amplification efficiency 35 correlation coefficient 35 C_T values 35 standard dilution series, preparing reactions 21 standards, defining and setting up 12 т targets and samples, assigning 13 targets, defining 11 targets, samples, and biological groups, assigning 12 targets, samples, and biological replicates, defining 11 temperature plot, viewing 30 THOLDFAIL flag 55 threshold cycle 37 threshold values, correcting 43 touchscreen, running experiment from Experiment View 32 Time View 32 W well table assessing own experiments 48 identifying well problems 45 viewing 45

Index

Part Number 4441434 Rev. C 12/2011 applied biosystems by Life technologies

BOOKLET 3

Running Relative Standard Curve and Comparative C_T Experiments

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

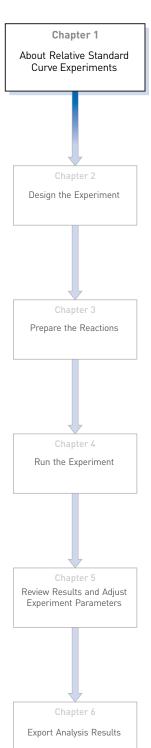
Contents

CHAPTER 1	About Relative Standard Curve Experiments	11
	About Relative Standard Curve experiments Assemble required components PCR options	12
	About the example experiment	
CHAPTER 2	Design the Experiment	15
	Define the experiment properties	16
	Define targets, samples, and biological replicates	17
	Assign targets, samples, and biological groups	
	Set up the run method	
	Order materials for the experiment	
	Tips for designing your own experiment	
	For more information	
CHAPTER 3	Prepare the Reactions	25
	Assemble required materials	26
	Prepare the template	26
	Example experiment settings	26
	To prepare the template	26
	Prepare the sample dilutions	26
	Prepare the standard dilution series for FAS and HPRT assays	
	Prepare the reaction mix ("cocktail mix")	28
	Prepare the reaction plate	29
	Example experiment reaction plate components	29
	To prepare the reaction plate components	30
	Tips for preparing reactions for your own experiments	
	Tips for preparing templates	
	Tips for preparing sample dilutions	
	Tips for preparing the reaction mix	
	Tips for preparing the reaction plate	
	For more information	32

CHAPTER 4	Run the Experiment	33
	Start the run	34
	Monitor the run	34
	From the Instrument Console of the ViiA™ 7 Software	34
	From the ViiA™ 7 Instrument touchscreen	37
CHAPTER 5	Review Results and Adjust Experiment Parameters	39
	Section 5.1 Review Results	41
	Analyze the example experiment	41
	View the Standard Curve Plot	41
	Example experiment standard curve values	41
	To view and assess the Standard Curve plot	41
	Tips for analyzing your own experiments	43
	Assess amplification results using the Amplification Plot	44
	Amplification plots available for viewing	44
	Purpose	
	View the Amplification Plot	
	Tips for analyzing your own experiments	
	Assess the gene expression profile using the Gene Expression Plot	
	Example experiment values	
	View the Gene Expression Plot	
	Assessing the gene expression plot in your own experiments	
	Identify well problems using the Well Table	
	Example experiment values and flags	
	Assessing the well table in your own experiments	
	Confirm accurate dye signal using the Multicomponent Plot	
	Purpose	
	View the Multicomponent Plot	
	Tips for confirming dye accuracy in your own experiment	
	Determine signal accuracy using the Raw Data Plot	
	About the example experiment	
	View the Raw Data Plot	
	Tips for determining signal accuracy in your own experiment	
	View the endogenous control profile using the QC Plot	
	Review the QC flags in the QC Summary	
	View the QC Summary	
	Possible flags	
	For more information	

Adjust analysis settings View the analysis settings Adjust analysis settings For more information CHAPTER 6 Export Analysis Results CHAPTER 7 About Comparative C _T Experiments About Comparative C _T experiments Assemble required components PCR options About the example experiment CHAPTER 8 Design the Experiment Define the experiment properties Define targets, samples and biological replicates Assign targets, samples and biological groups Set up the run method Order materials for the experiment Tips for designing your own experiment Tips for designing your own experiment For more information CHAPTER 9 Prepare the Reactions Assemble required materials Prepare the template Example experiment settings Prepare the template Example dilutions Prepares the resertion mix ("rocktail mix")		Section 5.2 Adjust parameters for re-analysis of your own experiments	63
Adjust analysis settings 66 Improve C _T precision by omitting wells 66 For more information 66 CHAPTER 6 Export Analysis Results 77 CHAPTER 7 About Comparative C _T Experiments 78 About Comparative C _T experiments 79 About Comparative C _T experiments 79 About Comparative C _T experiments 79 Assemble required components 79 PCR options 79 About the example experiment 79 CHAPTER 8 Design the Experiment 79 Define the experiment properties 81 Define the experiment properties 83 Assign targets, samples and biological replicates 84 Assign targets, samples and biological groups 85 Set up the run method 85 Order materials for the experiment 85 For more information 86 CHAPTER 9 Prepare the Reactions 87 Assemble required materials 99 Prepare the template 99 Prepare the sample dilutions 99		Adjust analysis settings	63
Improve C _T precision by omitting wells		View the analysis settings	63
For more information 66 CHAPTER 6 Export Analysis Results 7' CHAPTER 7 About Comparative C _T Experiments 7. About Comparative C _T experiments 7. Assemble required components 7. PCR options 7. About the example experiment 7 CHAPTER 8 Design the Experiment 7 CHAPTER 8 Design the Experiment 8 Define the experiment properties 8 Define targets, samples and biological replicates 8 Assign targets, samples and biological groups 8 Set up the run method 8 Order materials for the experiment 8 Tips for designing your own experiment 8 For more information 8 CHAPTER 9 Prepare the Reactions 8 Assemble required materials 9 Prepare the template 9 Example experiment settings 9 Prepare the template 9 Prepare the sample dilutions 9		, , ,	
CHAPTER 6 Export Analysis Results 7' CHAPTER 7 About Comparative C _T experiments 7, About Comparative C _T experiments 7, Assemble required components 7, PCR options 7, About the example experiment 7 CHAPTER 8 Design the Experiment 7 CHAPTER 8 Design the Experiment 8 Define the experiment properties 8 Define targets, samples and biological replicates 8 Assign targets, samples and biological groups 8 Set up the run method 8 Order materials for the experiment 8 Tips for designing your own experiment 8 For more information 8 CHAPTER 9 Prepare the Reactions 8 Assemble required materials 9 Prepare the template 9 Example experiment settings 9 Prepare the template 9 Prepare the sample dilutions 9			
About Comparative C _T Experiments 7. About Comparative C _T experiments 7. Assemble required components 7. Assemble required components 7. About the example experiment 7. CHAPTER 8 Design the Experiment 7. Define the experiment properties 8. Define targets, samples and biological replicates 8. Assign targets, samples and biological groups 8. Set up the run method 8. Order materials for the experiment 8. Tips for designing your own experiment 8. For more information 8. CHAPTER 9 Prepare the Reactions 8. Assemble required materials 9. Prepare the template 9. Example experiment settings 9. Prepare the template 9. Prepare the sample dilutions 9.		For more information	69
About Comparative C _T experiments 7. Assemble required components 7. PCR options 7. About the example experiment 7. CHAPTER 8 Design the Experiment 7. Define the experiment properties 8. Define targets, samples and biological replicates 8. Assign targets, samples and biological groups 8. Set up the run method 8. Order materials for the experiment 8. Tips for designing your own experiment 8. For more information 8. CHAPTER 9 Prepare the Reactions 8. Assemble required materials 9. Prepare the template 9. Example experiment settings 9. Prepare the template 9. Prepare the sample dilutions 9.	CHAPTER 6	Export Analysis Results	71
Assemble required components 77 PCR options 77 About the example experiment 77 CHAPTER 8 Design the Experiment 77 Define the experiment properties 88 Define targets, samples and biological replicates 88 Assign targets, samples and biological groups 88 Set up the run method 88 Order materials for the experiment 88 Tips for designing your own experiment 88 For more information 88 CHAPTER 9 Prepare the Reactions 89 Assemble required materials 99 Prepare the template 99 Example experiment settings 99 Prepare the template 99 Prepare the sample dilutions 99	CHAPTER 7	About Comparative C _T Experiments	75
PCR options		About Comparative C _T experiments	76
About the example experiment		·	
CHAPTER 8 Design the Experiment Define the experiment properties Define targets, samples and biological replicates Assign targets, samples and biological groups Set up the run method Order materials for the experiment Tips for designing your own experiment For more information CHAPTER 9 Prepare the Reactions Assemble required materials Prepare the template Example experiment settings Prepare the template Example template Prepare the sample dilutions 96 97 98 98 99 99 99 99 99 99 99		·	
Define the experiment properties		About the example experiment	77
Define targets, samples and biological replicates 8 Assign targets, samples and biological groups 8 Set up the run method 8 Order materials for the experiment 8 Tips for designing your own experiment 8 For more information 8 CHAPTER 9 Prepare the Reactions 89 Assemble required materials 99 Prepare the template 99 Example experiment settings 99 Prepare the template 99 Prepare the template 99 Prepare the template 99 Prepare the template 99 Prepare the sample dilutions 99	CHAPTER 8	Design the Experiment	79
Assign targets, samples and biological groups Set up the run method Order materials for the experiment Tips for designing your own experiment For more information CHAPTER 9 Prepare the Reactions Assemble required materials Prepare the template Example experiment settings Prepare the template Prepare the template Prepare the template Prepare the template Prepare the sample dilutions		Define the experiment properties	80
Set up the run method Order materials for the experiment Tips for designing your own experiment For more information CHAPTER 9 Prepare the Reactions Assemble required materials Prepare the template Example experiment settings Prepare the template 90 Prepare the template 91 Prepare the template 92 Prepare the sample dilutions 93		Define targets, samples and biological replicates	81
Order materials for the experiment 88 Tips for designing your own experiment 88 For more information 88 CHAPTER 9 Prepare the Reactions 89 Assemble required materials 99 Prepare the template 99 Example experiment settings 99 Prepare the template 99 Prepare the template 99 Prepare the template 99 Prepare the sample dilutions 99		Assign targets, samples and biological groups	83
Tips for designing your own experiment For more information 88 CHAPTER 9 Prepare the Reactions Assemble required materials Prepare the template Example experiment settings Prepare the template Prepare the template Prepare the template Prepare the sample dilutions		Set up the run method	84
For more information 8 CHAPTER 9 Prepare the Reactions 89 Assemble required materials 99 Prepare the template 99 Example experiment settings 99 Prepare the template 99 Prepare the template 99 Prepare the sample dilutions 99		Order materials for the experiment	85
CHAPTER 9 Prepare the Reactions		Tips for designing your own experiment	86
Assemble required materials 99 Prepare the template 99 Example experiment settings 99 Prepare the template 99 Prepare the sample dilutions 99		For more information	87
Prepare the template 99 Example experiment settings 99 Prepare the template 99 Prepare the sample dilutions 99	CHAPTER 9	Prepare the Reactions	89
Example experiment settings 99 Prepare the template 99 Prepare the sample dilutions 99		Assemble required materials	90
Prepare the template		Prepare the template	90
Prepare the sample dilutions			
		·	
Prenare the reaction mix ("cocktail mix")			
·		Prepare the reaction mix ("cocktail mix")	
Prepare the reaction plate		·	
Example experiment reaction plate components		·	
To prepare the reaction plate components			
Tips for preparing reactions for your own experiments			
Tips for preparing templates			
Tips for preparing the reaction plate			
For more information		·	

CHAPTER 10	Run the Experiment	95
	Start the run	96
	Monitor the run	
	From the Instrument Console of the ViiA™ 7 Software	
	From the ViiA™ 7 Instrument touchscreen	
CHAPTER 11	Review Results and Adjust Experiment Parameters	101
	Section 11.1 Review Results	103
	Analyze the example experiment	103
	Assess the gene expression profile using the Gene Expression Plot	103
	Example experiment values	104
	View the Gene Expression Plot	
	Assessing the gene expression plot your own experiments	
	Identify well problems using the Well Table	
	Example experiment values and flags	
	View the well table	
	Assessing the well table in your own experiments	
	Assess amplification results using the Amplification Plot	
	Amplification plots available for viewing	
	Purpose	
	View the Amplification Plot	
	Confirm accurate dye signal using the Multicomponent Plot	
	Purpose	
	View the Multicomponent Plot	
	Tips for confirming dye accuracy in your own experiment	
	Determine signal accuracy using the Raw Data Plot	
	About the example experiment	
	View the Raw Data Plot	
	Tips for determining signal accuracy in your own experiment	
	View the endogenous control profile using the QC Plot	118
	Example experiment settings	
	View the QC Plot	118
	Review the flags in the QC Summary	119
	View the QC Summary	119
	Possible flags	120
	For more information	121
	Section 11.2 Adjust parameters for re-analysis of your own experiments	123
	Adjust analysis settings	123
	View the analysis settings	123
	Adjust analysis settings	124
	Improve C _T precision by omitting wells	127


CHAPTER 12	Export Analysis Results	131
CHAPTER 13	Design and Analyze a Gene Expression Study	133
	About Gene Expression studies	134
	About the example study	134
	Design a study	135
	Create a new study	
	Set up the study in the Study Properties screen	135
	Filter the experiments in the study	136
	Define Replicates	136
	Example study settings	
	To define replicates	
	Edit a Biological Replicate Group	
	Remove Biological Replicate Groups	
	Tips for designing your own study	
	Analyze the example study	
	Access the example study	
	View the experiment data and well results	
	View the analysis settings	
	Tips for analyzing your own study	
	Assess amplification results using the Amplification Plot	
	Tips for assessing amplification in your own study	
	Assess the gene expression profile using the Gene Expression Plot	
	About the example study	
	Tips for assessing the gene profile in your own study	
	View the replicate results data and the well results data	
	Column descriptions	
	About the example study	
	View the results data	
	Tips for viewing replicate results in your own study	
	Omit replicates from the analysis	
	Confirm accurate dye signal using the Multicomponent Plot	158
	About the example study	
	View the Multicomponent Plot	
	Tips for confirming dye-signal accuracy in your own studies	159
	View the QC Plots	160
	View the Endogenous Control Profile plot	160
	View the box plots	161
	View the Technical Replicates Correlation plot	
	View the Biological Group Correlation plot	
	Heat maps	
	Tips for viewing your own scatter plots and heat maps	168

View the QC Summary	168
About the example study	
View the QC Summary	
Possible flags	169
Tips for using flags to evaluate your study	
Compare analysis settings	
About the example study	
Modify comparison criteria	171
Tips for managing your own comparison	174
Revert to the default analysis settings	174
Omit wells from the analysis	175
Export the study	175
For more information	
Index	179

PART I Running Relative Standard Curve Experiments

About Relative Standard Curve Experiments

This chapter covers:

IMPORTANT! First-time users of the ViiATM 7 System, please read Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments* and Booklet 7, *ViiA*TM 7 *System Experiments - Appendixes* of this binder thoroughly. The booklets provide information and general instructions that are applicable to all the experiments described in this binder.

Note: For more information about any of the topics discussed in this guide, access the Help from within Applied Biosystems ViiA[™] 7 Software by pressing **F1**, clicking in the toolbar, or selecting **Help** ▶ **ViiA[™]** 7 **Software Help**.

About Relative Standard Curve experiments

The Relative Standard Curve method is used to determine relative target quantity in samples. The ViiATM 7 Software measures amplification of the target and of the endogenous control in samples, in a reference sample, and in a standard dilution series. Measurements are normalized using the endogenous control. Data from the standard dilution series are used to generate the standard curve. Using the standard curve, the software interpolates target quantity and endogenous control quantity in the samples and the reference sample. For each sample and reference sample, the target quantity is normalized by endogenous control quantity (quantity of target/ quantity of endogenous control). The normalized quotient from samples is divided by the quotient from the reference sample to get relative quantification (fold change). The software determines the relative quantity of target in each sample by comparing target quantity in each sample to target quantity in the reference sample.

Relative Standard Curve experiments are commonly used to:

- Compare expression levels of a gene in different tissues.
- Compare expression levels of a gene in a treated sample and an untreated sample.
- Compare expression levels of wild-type alleles and mutated alleles.
- Analyze the gene expression changes over time under specific treatment conditions.

Assemble required components

- **Sample** The tissue group that you are testing for a target gene.
- **Reference sample (also called a calibrator)** The sample used as the basis for relative quantification results. For example, in a study of drug effects on gene expression, an untreated control is an appropriate reference sample.
- **Standard** A sample that contains known quantities of the target; used in quantification experiments to generate standard curves.
- **Standard dilution series** A set of standards containing a range of known quantities. The standard dilution series is prepared by serially diluting standards.
- **Endogenous control** A gene that is used to normalize template input differences, and sample-to-sample or run-to-run variation.
- **Replicates** The total number of identical reactions containing identical components and identical volumes.
- **Negative controls** Wells that contain water or buffer instead of sample template. No amplification of the target should occur in negative control wells.

PCR options

When performing real-time PCR, choose between:

- Singleplex and multiplex PCR (below)
- 1-step and 2-step RT-PCR (page 13)

12

Singleplex and Multiplex PCR

You can perform a PCR reaction using either:

• **Singleplex PCR** – In singleplex PCR a single primer and probe set is present in the reaction tube or well. Only one target or endogenous control can be amplified per reaction.

Or

• Multiplex PCR – In multiplex PCR, two or more primer and probe sets are present in the reaction tube or well. Each set amplifies a specific target or endogenous control. Typically, a probe labeled with FAMTM dye detects the target and a probe labeled with VIC[®] dye detects the endogenous control.

IMPORTANT! SYBR[®] Green reagents cannot be used for multiplex PCR.

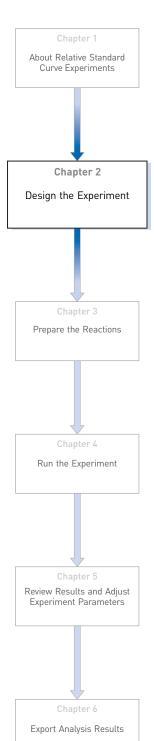
1- and 2-Step RT-PCR You can perform reverse transcription (RT) and PCR in a single reaction (1-step) or in separate reactions (2-step). The reagent configuration you use depends on whether you are performing 1- or 2-step RT-PCR:

- 1-step PCR- In 1-step RT-PCR, RT and PCR take place in one buffer system. Using one buffer system provides the convenience of a single-tube preparation for RT and PCR amplification. However, you cannot use Fast PCR Master Mix or the carryover prevention enzyme, AmpErase[®] UNG (uracil-N-glycosylase), to perform 1-step RT-PCR.
- **2-step PCR** 2-step RT-PCR is performed in two separate reactions: First, total RNA is reverse-transcribed into cDNA, then the cDNA is amplified by PCR. This method is useful for detecting multiple transcripts from a single cDNA template or for storing cDNA aliquots for later use. The AmpErase[®] UNG enzyme can be used to prevent carryover contamination.

About the example experiment

To illustrate how to perform a Relative Standard Curve, this guide leads you through the process of designing and performing an example experiment. The example experiment represents a typical setup that you can use to quickly familiarize yourself with the $ViiA^{TM}$ 7 System.

The objective of the Relative Standard Curve example experiment is to compare the expression of the FAS transcriptional factor (an oncoprotein that activates the transcription of growth-associated genes) in Human cDNA tissues.


In the Relative Standard Curve example experiment:

- The samples are kidney, liver, brain, and heart.
- The target is FAS.
- The endogenous control is HPRT.

- The reference sample is brain.
- One standard curve is set up for FAS. The standard used for the standard dilution series is a Human cDNA sample of known total concentration.
- One standard curve is set up for HPRT (endogenous control). The standard used for the standard dilution series is a Human Male Raji cDNA sample of known total concentration.
- Reactions are set up for 2-step RT-PCR. The Invitrogen VILO Kit is used for reverse transcription; the TaqMan[®] Gene Expression Master Mix (2X) is used for PCR.
- Select primer and probe sets from the Applied Biosystems TaqMan[®] Gene Expression Assays product line:
 - For the target assay (FAS), select assay ID Hs00907759_m1.
 - For the endogenous control assay (HPRT), select assay ID Hs99999999_m1.

2

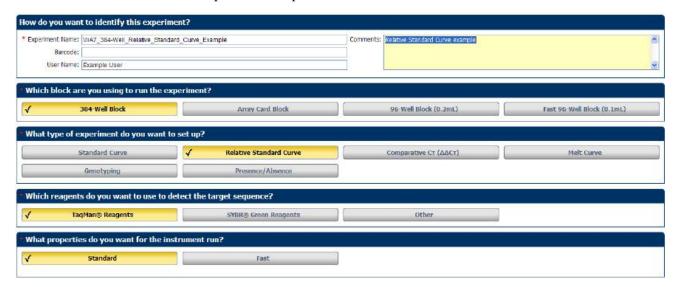
Design the Experiment

This chapter explains how to design the example experiment from the Experiment Setup menu.

This chapter covers:

Define the experiment properties	16
Define targets, samples, and biological replicates	17
Assign targets, samples, and biological groups	19
Set up the run method	21
Order materials for the experiment	22
Tips for designing your own experiment	22
For more information.	23

Note: To automatically export the analyzed data to a specified location, select the Auto Export task from the Export screen, before running the experiment. For more information on Auto Export, refer to Chapter 1 in Booklet 1, Getting Started with $ViiA^{TM}$ 7 System Experiments.


Define the experiment properties

Click **Experiment Setup** ▶ **Experiment Properties** to create a new experiment in the ViiA[™] 7 Software. Enter:

Field or Selection	Entry
Experiment Name	ViiA7_384-Well_Relative_Standard_Curve_Example
Barcode	Leave field empty
User Name	Example User
Comments	Relative Standard Curve example
Block	384-Well Block
Experiment Type	Relative Standard Curve
Reagents	TaqMan® Reagents
Ramp speed	Standard

Save the experiment.

Your Experiment Properties screen should look like this:

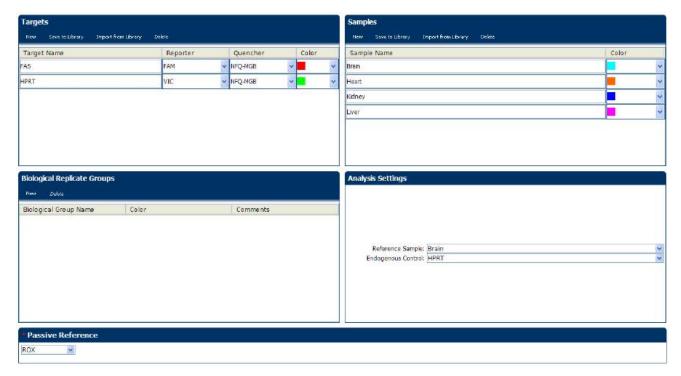
Define targets, samples, and biological replicates

Click **Define** to access the Define screen. Enter:

1. Targets

Target name	Reporter	Quencher	Color
FAS	FAM	NFQ-MGB	
HPRT	VIC	NFQ-MGB	

2. Samples


Sample name	Color
Brain	
Heart	
Kidney	
Liver	

3. Dye to be used as a Passive Reference ROX

4. Analysis Settings

Field	Select
Reference Sample	Brain
Endogenous Control	HPRT

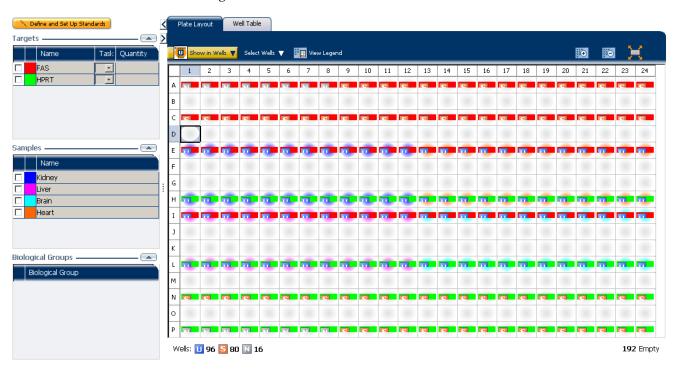
Your Define screen should look like this:

Note: This example experiment does not define biological replicate groups. Leave Biological Replicate Groups blank.

Assign targets, samples, and biological groups

Click **Assign** to access the Assign screen.

Note: To automatically set up and assign standards, click he Define and Set Up Standards dialog box.

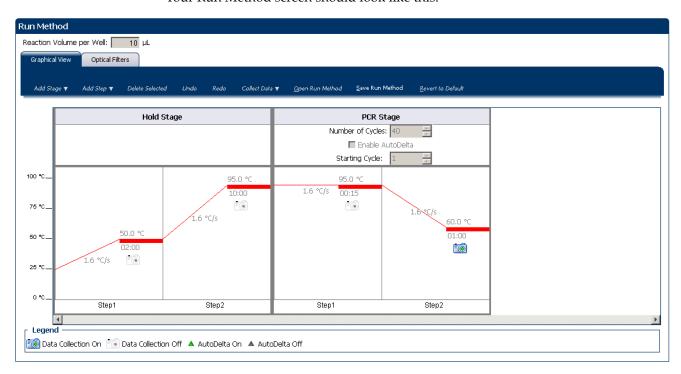

To assign the targets and samples:

- 1. Set up the standards.
- **2.** For the first standard for the FAS target:
 - a. Click-drag to select wells A9-A16.
 - **b.** Check check box next to FAS in the Targets list.
 - **c.** Select S in the Task drop-down menu.
 - **d.** Enter 625 in the Quantity column.
 - **e.** Repeat steps a through c for each of the standards for the FAS target, selecting the wells listed in the table below, and entering the corresponding quantity.
- 3. Repeat step 2 for each standard for the HPRT target.

Target name	Well number	Task	Quantity	Sample name
FAS	A1 - A8	Negative	None	None
	E1 - E12	Unknown	Determined by run	Kidney
	E13 - E24	Unknown	Determined by run	Heart
	l1 - 112	Unknown	Determined by run	Liver
	113 - 124	Unknown	Determined by run	Brain
	A9 - A16	Standard	625	None
	A17 - A24	Standard	2,500	None
	C1 - C8	Standard	312.50	None
	C9 - C16	Standard	1,250	None
	C17 - C24	Standard	5,000	None

Target name	Well number	Task	Quantity	Sample name
HPRT	P1 - P8	Negative	None	None
	H1 - H12	Unknown	Determined by run	Kidney
	H13 - H 24	Unknown	Determined by run	Heart
	L1 - L12	Unknown	Determined by run	Liver
	L13 - L24	Unknown	Determined by run	Brain
	N1 - N8	Standard	165.25	None
	N9 - N16	Standard	625	None
	N17 - N24	Standard	2,500	None
	P9 - P16	Standard	312.50	None
	P17 - P24	Standard	1,250	None

Your Assign screen should look like this:

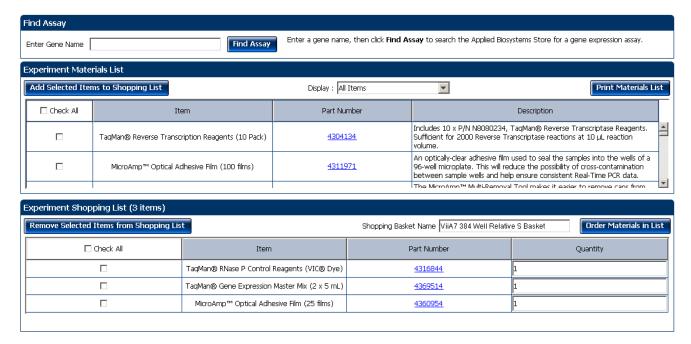

Set up the run method

Click **Run Method** to access the Run Method screen. Set the thermal profile under the Graphical View tab. Enter:

- Reaction Volume Per Well: 10µL
- Thermal Profile

Stage	Step	Ramp rate	Temperature	Time
Hold Stage	Step 1	1.6 °C/s	50 °C	2 minutes
	Step 2	1.6 °C/s	95 °C	10 minutes
PCR Stage	Step 1	1.6 °C/s	95 °C	15 seconds
Number of Cycles: 40	Step 2	1.6 °C/s	60 °C	1 minute
Enable AutoDelta: Unchecked (default)				
Starting Cycle: Disabled when Enable AutoDelta is unchecked				

Your Run Method screen should look like this:



Order materials for the experiment

The recommended materials are:

- MicroAmp® Optical 384-Well Reaction Plate
- MicroAmp[®] Optical Adhesive Film
- TaqMan[®] Gene Expression Master Mix (2X)
- FAS target assay
- HPRT target assay

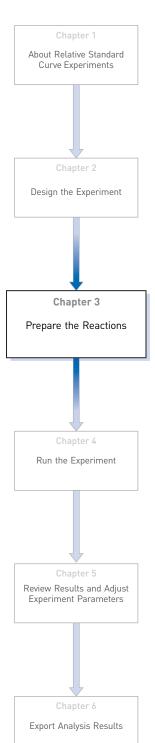
Your Materials List screen should look like this:

Tips for designing your own experiment

Applied Biosystems recommends that you:

- Set up a standard curve for each target assay in the reaction plate.
- Identify each target assay with a unique name and color. You can enter up to 100 characters in the Target Name field.
- Identify each sample using a unique name and color. You can enter up to 100 characters in the Sample Name field.
- Select an endogenous control for each sample. The endogenous control is a target that is present in all samples under investigation. It should be expressed equally in all sample types, regardless of treatment or tissue origin (examples of endogenous controls are β-actin, GAPDH, and 18S ribosomal RNA [18S rRNA]). The endogenous control is used to normalize the PCR results; the endogenous control corrects for variable sample mass, nucleic acid extraction efficiency, reverse transcription efficiency, and pipette calibration errors.

Note: Each sample type (for example, each tissue in a study comparing multiple tissues) requires an endogenous control.


- Enter at least five dilution points for each standard curve in the reaction plate.
- Enter at least three replicates (identical reactions) for each point in the standard curve and for each sample reaction.
- Enter at least three negative control reactions for each target assay.
- Carefully consider the appropriate range of standard quantities for your assay because the range of standard quantities affects the amplification efficiency calculations:
 - For more accurate measurements of amplification efficiency, use a broad range of standard quantities, spanning between 5 and 6 logs. If you do so, use a PCR product or a highly concentrated template, such as a cDNA clone.
 - If you have a limited amount of cDNA template and/or if the target is a low-copy number transcript, or known to fall within a given range, a narrow range of standard quantities may be necessary.
- Minimally run a five-point curve of 1:10 dilutions to minimize the effects of small pipetting errors.
- Select a reference sample from your previously defined samples. Amplification results from the samples and from the reference sample are compared to determine relative expression.
- Select an endogenous control from your previously defined target assays.
 Amplification results from the endogenous control are used to normalize the amplification results from the target for differences in the amount of template added to each reaction.

For more information

For more information on	Refer to	Part number
Consumables Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments		4441434
	Appendix A in Booklet 7, ViiA [™] 7 System Experiments - Appendixes	
Using other quantification methods	Booklet 2, Running Standard Curve Experiments and Part 2 of Booklet 3, Running Relative Standard Curve and Comparative C_T Experiments.	4441434
Amplification efficiency	Amplification Efficiency of TaqMan [®] Gene Expression Assays Application Note	127AP05-03
Using Alternative Setup	Chapter 2 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434

Prepare the Reactions

This chapter explains how to prepare the PCR reactions for the Relative Standard Curve example experiment.

This chapter covers:

Assemble required materials	26
Prepare the template	26
Prepare the sample dilutions	26
Prepare the standard dilution series for FAS and HPRT assays	27
Prepare the reaction mix ("cocktail mix")	28
Prepare the reaction plate	29
Tips for preparing reactions for your own experiments	32
For more information	32

Assemble required materials

- Items listed in Booklet 1, *Getting Started with ViiA*[™] 7 *System Experiments*
- Samples Total RNA isolated from kidney, heart, liver, and brain tissues.
- Example experiment reaction mix components:
 - TaqMan® Gene Expression Master Mix (2X)
 - FAS Assay Mix (20X)
 - HPRT Assay Mix (20X)

Prepare the template

Prepare the template for the PCR reactions (both samples and standards) using one of the Invitrogen VILO kits, SuperScript[®] VILOTM cDNA Synthesis Kit (PN 4453650).

Example experiment settings

For the Relative Standard Curve example experiment, the template for the PCR reactions is cDNA reverse-transcribed from total RNA samples using the Invitrogen VILO kits.

To prepare the template

Use the Invitrogen VILO kits to reverse-transcribe cDNA from the total RNA samples. Follow the procedures in the *Invitrogen VILO Kits Protocol* (PN 100002284) to:

- 1. Isolate total RNA from cells using an Ambion[®] sample preparation kit appropriate to the tissue or cell type.
- 2. Quantify and perform quality control on the RNA.
- **3.** Convert the RNA to cDNA via reverse transcription.

Prepare the sample dilutions

For the Relative Standard Curve example experiment, no more than 10% of your reaction should consist of the undiluted cDNA.

- 1. Label a separate microcentrifuge tube for each diluted sample:
 - Kidney
 - Heart
 - Liver
 - Brain

2. Add the required volume of water (diluent) to each empty tube:

Tube	Sample name	Diluent volume (µL)
1	Kidney	76
2	Heart	76
3	Liver	76
4	Brain	76

3. Add the required volume of sample stock (100 ng/ μ L) to each empty tube:

Tube	Sample name	Diluent volume (µL)
1	Kidney	4
2	Heart	4
3	Liver	4
4	Brain	4

- **4.** Vortex each diluted sample for 3 to 5 seconds, then centrifuge the tubes briefly.
- **5.** Place the diluted samples on ice until you prepare the reaction plate.

Prepare the standard dilution series for FAS and HPRT assays

The same standard materials are used to prepare the exact same dilutions for both the target genes. The prepared standards are then used to generate the two standard curves.

- The stock concentration for cDNA is 100 ng/μL.
- The volumes calculated for both the FAS and HPRT assays are:

Standard name (labeled tube)	Dilution point	Source	Source volume (µL)	Diluent volume (µL)	Total volume (µL)	Standard concentration (ng/µL)
Std. 1	1	Stock	20	20	40	100
Std. 2	2	Dilution 1	20	20	40	50
Std. 3	3	Dilution	20	20	40	25
Std. 4	4	Dilution 3	20	20	40	12.5
Std. 5	5	Dilution 4	20	20	40	6.25

- 1. Label ten separate microcentrifuge tubes for each diluted standard:
 - FAS (FAS Std. 1 FAS Std. 5)
 - HPRT (HPRT Std. 1 HPRT Std. 5)

Chapter 3 Prepare the Reactions Prepare the reaction mix ("cocktail mix")

2. Prepare five standard dilutions each for FAS and HPRT:

Note: For dilution 1, first vortex the stock for 3 to 5 seconds, then centrifuge both the Std. 1 tubes briefly before pipetting $10 \mu L$ stock into each Std. 1 tube.

- **3.** For each subsequent dilution, add source to the standard:
 - a. Use a new pipette tip to add 10 μL of source to the FAS and HPRT tubes containing the standard.
 - **b.** Vortex the tubes for 3 to 5 seconds, then centrifuge the tubes briefly.
- **4.** Place the standards on ice until you prepare the reaction plate.

Prepare the reaction mix ("cocktail mix")

- 1. Label an appropriately sized tube for each reaction mix:
 - FAS Reaction Mix
 - HPRT Reaction Mix
- 2. For the FAS assay, add the required volumes of each component to the FAS Reaction Mix tube:

Component	Volume (µL) for 1 reaction	Volume (µL) for 96 reactions (plus 10% excess)
TaqMan [®] Gene Expression Master Mix (2X)	5	530
FAS Assay Mix (20X)	0.5	53
Water	3.5	371
Total Reaction Mix Volume	9	954

3. For the HPRT assay, add the required volumes of each component to the HPRT Reaction Mix tube:

Component	Volume (µL) for 1 reaction	Volume (µL) for 96 reactions (plus 10% excess)
TaqMan [®] Gene Expression Master Mix (2×.)	5	530
HPRT Assay Mix (20X	0.5	53
Water	3.5	371
Total Reaction Mix Volume	9	954

- **4.** Mix the reaction in each tube by gently pipetting up and down, then cap each tube.
- 5. Centrifuge the tubes briefly to remove air bubbles.

6. Place the reaction mixes on ice until you prepare the reaction plate.Note: Do not add the sample or standard at this time.

Prepare the reaction plate

Example experiment reaction plate components

The reaction plate for the Relative Standard Curve example experiment contains:

- A MicroAmp[®] Optical 384-Well Reaction Plate
- Reaction volume: 10µL/well
- 96 Unknown wells U
- 80 Standard wells S
- 16 Negative control wells **№**
- 192 Empty wells

The plate layout for the example experiment looks like this:

To prepare the reaction plate components

- 1. For each target, prepare the negative control reactions:
 - **a.** To an appropriately sized tube, add the volumes of reaction mix and water listed below.

Tube	Reaction mix	Reaction mix volume (µL)	Water volume (µL)
1	FAS Reaction Mix	79.2	8.8
2	HPRT Reaction Mix	79.2	8.8

- **b.** Mix the reaction by gently pipetting up and down, then cap the tube.
- **c.** Centrifuge the tube briefly to remove air bubbles.
- **d.** Add 10 μ L of the negative control reaction to the appropriate wells in the reaction plate.
- **2.** For each replicate group, prepare the standard reactions:
 - **a.** To appropriately sized tubes, add the volumes of reaction mix and standard listed below.

Tube	Standard rection	Reaction mix	Reaction mix voulme (µL)	Standard	Standard volume (µL)
1	FAS Std. 1	FAS Reaction Mix	79.2	FAS Std. 1	8.8
2	FAS Std. 2	FAS Reaction Mix	79.2	FAS Std. 2	8.8
3	FAS Std. 3	FAS Reaction Mix	79.2	FAS Std. 3	8.8
4	FAS Std. 4	FAS Reaction Mix	79.2	FAS Std. 4	8.8
5	FAS Std. 5	FAS Reaction Mix	79.2	FAS Std. 5	8.8
6	HPRT Std. 1	HPRT Reaction Mix	79.2	HPRT Std. 1	8.8
7	HPRT Std. 2	HPRT Reaction Mix	79.2	HPRT Std. 2	8.8
8	HPRT Std. 3	HPRT Reaction Mix	79.2	HPRT Std. 3	8.8
9	HPRT Std. 4	HPRT Reaction Mix	79.2	HPRT Std. 4	8.8
10	HPRT Std. 5	HPRT Reaction Mix	79.2	HPRT Std. 5	8.8

- **b.** Mix the reactions by gently pipetting up and down, then cap the tubes.
- **c.** Centrifuge the tubes briefly to remove air bubbles.

- **d.** Add 10 μL of the standard reaction to the appropriate wells in the reaction plate.
- **3.** For each replicate group, prepare the reactions for the unknowns:
 - **a.** To appropriately sized tubes, add the volumes of reaction mix and sample listed below:

Tube	Unknown reaction	Reaction mix	Reaction mix volume (µL)	Sample	Sample volume (µL)
1	FAS Kidney	FAS Reaction Mix	118.8	Kidney	13.2
2	FAS Heart	FAS Reaction Mix	118.8	Heart	13.2
3	FAS Liver	FAS Reaction Mix	118.8	Liver	13.2
4	FAS Brain	FAS Reaction Mix	118.8	Brain	13.2
5	HPRT Kidney	HPRT Reaction Mix	118.8	Kidney	13.2
6	HPRT Heart	HPRT Reaction Mix	118.8	Heart	13.2
7	HPRT Liver	HPRT Reaction Mix	118.8	Liver	13.2
8	HPRT Brain	HPRT Reaction Mix	118.8	Brain	13.2

- **b.** Mix the reactions by gently pipetting up and down, then cap the tubes.
- **c.** Centrifuge the tubes briefly to remove air bubbles.
- **d.** Add 10 μ L of the unknown (sample) reaction to the appropriate wells in the reaction plate.
- **4.** Seal the reaction plate with optical adhesive film.
- **5.** Centrifuge the reaction plate briefly to remove air bubbles.
- **6.** Confirm that the liquid is at the bottom of each well of the reaction plate. If not, centrifuge the reaction plate again at a higher speed and for a longer period of time.
- **7.** Until you are ready to perform the run, place the reaction plate at 4 °C, in the dark.

Tips for preparing reactions for your own experiments

Tips for preparing templates

When you prepare your own Relative Standard Curve experiment, Applied Biosystems recommends the following templates:

- **Complementary DNA (cDNA)** cDNA reverse-transcribed from total RNA samples.
- **Genomic DNA (gDNA)** Purified gDNA already extracted from tissue or sample

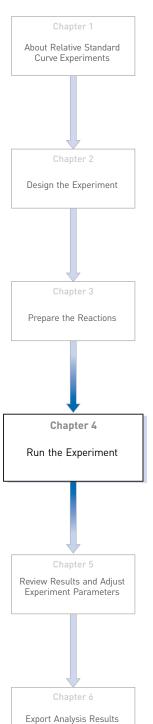
Tips for preparing sample dilutions

When you prepare your own Relative Standard Curve experiment, for optimal performance of TaqMan[®] Gene Expression Assays or Custom TaqMan[®] Gene Expression Assays, use 10 to 100 ng of cDNA template per 10µL reaction.

Tips for preparing the reaction mix

If your experiment includes more than one target assay, prepare the reaction mix for each target assay separately.

Tips for preparing the reaction plate


When you prepare your own Relative Standard Curve experiment, make sure the arrangement of the PCR reactions matches the plate layout displayed in the Vii A^{TM} 7 Software.

For more information

For more information on	Refer to	Part number
Assigning the reaction plate components	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434
Sealing the reaction plate	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> ™ 7 System Experiments	4441434

Run the Experiment

This chapter explains how to run the example experiment on the $ViiA^{TM}$ 7 Instrument. This chapter covers:

IMPORTANT! Run the experiment at the same ambient temperature at which you calibrated the instrument. Extreme variations in ambient temperature can affect the heating and cooling of the instrument and influence experimental results.

IMPORTANT! Do not attempt to open the access door during the run. The door is locked while the ViiATM 7 Instrument is in operation.

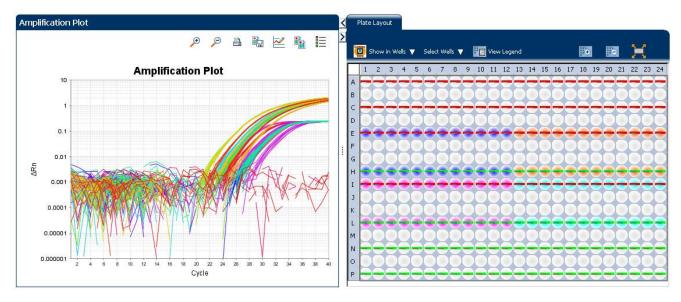
Start the run

- 1. Open the Relative Standard Curve example file that you created using instructions in Chapter 2.
- **2.** Load the reaction plate into the instrument.
- **3.** Start the run.

Monitor the run

Monitor the example experiment run:

- From the ViiATM 7 Software using the Run screen, while the experiment is in progress.
- From the Instrument Console of the ViiATM 7 Software (to monitor an experiment started from another computer or from the ViiATM 7 Instrument touchscreen).
- From the ViiATM 7 Instrument touchscreen.


From the Instrument Console of the ViiA™ 7 Software

- 1. In the Instrument Console screen, select the instrument icon.
- **2.** Click **Manage Instrument** or double-click on the instrument icon.
- **3.** In the Manage Instrument screen, click **Monitor Running Experiment** to access the Run screen.

View the Amplification Plot You can view the progress of the run in real time. During the run, periodically view all the three plots available from the Vii A^{TM} 7 Software for potential problems.

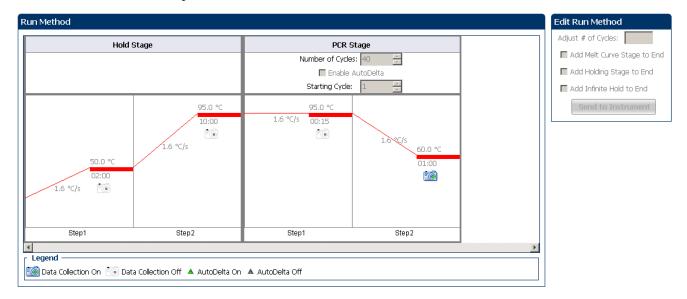
To view data in the Amplification Plot screen, click **Amplification Plot** from the Run Experiment Menu, and select the Plate Layout tab, then select the wells that you want to view.

The figure below shows the Amplification Plot screen as it appears at the end of the example experiment.

View the Temperature Plot

To view data in the Temperature Plot screen, click **Temperature Plot** from the Run Experiment Menu.

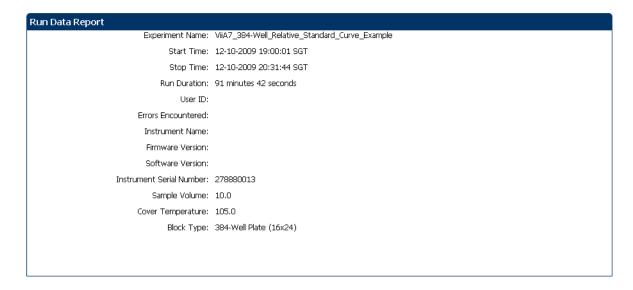
The figure below shows the Temperature Plot screen as it appears during the example experiment.



Note: The Sample temperature displayed in the Current Temperatures group is an estimated value.

View the Run Method

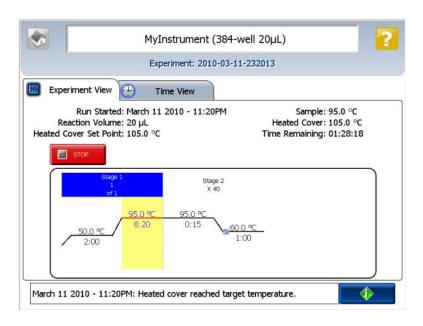
To view data in the Run Method screen, click **Run Method** from the Run Experiment Menu


The figure below shows the Run Method screen as it appears in the example experiment.

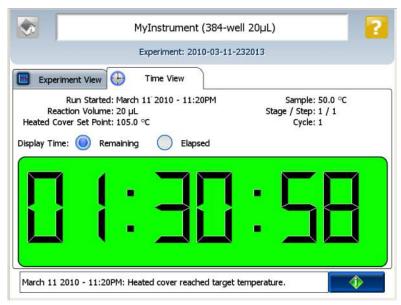
View run data

To view the run data, click **View Run Data** from the Run Experiment Menu.

Your View Run Data screen should look like this:

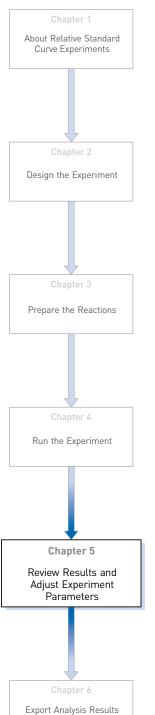


From the ViiA™ 7 Instrument touchscreen


You can also view the progress of the run from the touch screen of the ViiA $^{\rm TM}$ 7 Instrument.

The Run Method screen on the $ViiA^{TM}$ 7 Instrument touchscreen looks like this:

Experiment view



Time view

Review Results and Adjust Experiment Parameters

In Section 5.1 of this chapter you review the analyzed data using several of the analysis screens and publish the data. Section 5.2 of this chapter walks you through the process of modifying experiment parameters to troubleshoot problems with experiment results before rerunning an experiment.

This chapter covers:

Section 5.1 Review Results	41
Analyze the example experiment	41
View the Standard Curve Plot	41
Assess amplification results using the Amplification Plot	44
Assess the gene expression profile using the Gene Expression Plot	51
Identify well problems using the Well Table	53
Confirm accurate dye signal using the Multicomponent Plot	55
Determine signal accuracy using the Raw Data Plot	57
View the endogenous control profile using the QC Plot	59
Review the QC flags in the QC Summary	60
For more information.	62
Section 5.2 Adjust parameters for re-analysis of your own experiments	63
Adjust analysis settings	63
$\label{eq:continuous_continuous} Improve \ C_T \ precision \ by \ omitting \ wells $	68
For more information	69

Section 5.1 Review Results

Analyze the example experiment

- 1. Open the example experiment file that you ran in Chapter 4.
- **2.** Click **Analyze**. The software analyzes the data using the default analysis settings. You can also access the experiment to analyze from the Home screen.

View the Standard Curve Plot

The Standard Curve Plot screen displays the standard curve for samples designated as standards. The ViiATM 7 Software calculates the quantity of an unknown target from the standard curve.

Example experiment standard curve values

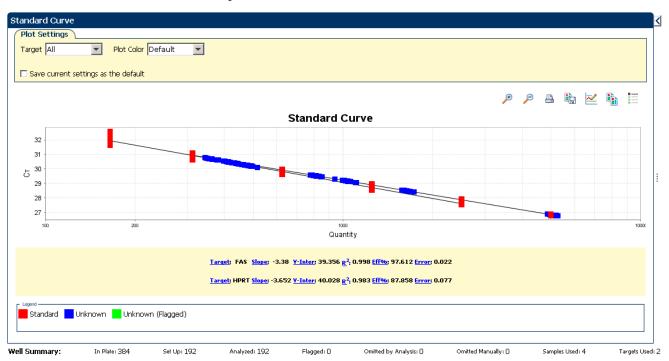
In the standard curve example experiment, you review the Standard Curve Plot screen for the following regression coefficient values:

- Slope/amplification efficiency
- R² value (correlation coefficient)
- C_T values

To view and assess the Standard Curve plot

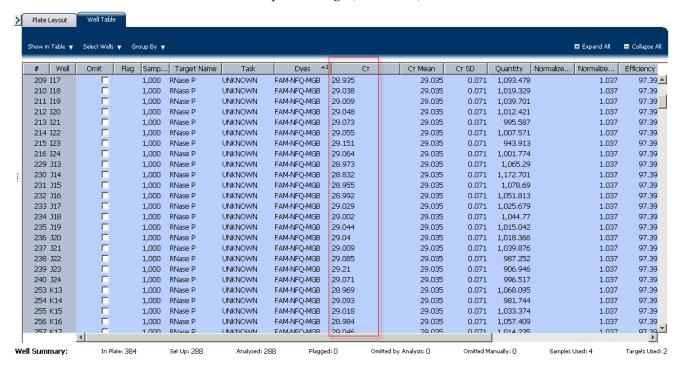
- 1. From the Experiment Menu pane, select **Analysis** ▶ **Standard Curve**.
 - Note: If no data are displayed, click Analyze.
- 2. Display all 384 wells in the Standard Curve Plot screen by clicking the upper left corner of the plate layout in the Plate Layout tab.
- **3.** Enter the Plot Settings:

Menu	Selection
Target	All
Plot Color	Default



Menu	Selection
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.)	Check (default)

4. View the values displayed below the standard curve. In the example experiment, the values for each target fall within the acceptable ranges:


Target	Slope	R ² Value	Amplification efficiency (Eff%)
FAS	-3.38	0.998	97.612
HPRT	-3.652	0.983	87.858

5. Check that all samples are within the standard curve. In the example experiment, all samples (blue dots) are within the standard curve (red dots).

- **6.** Check the C_T values:
- 7. Click the Well Table tab.
- **8.** From the Group By drop-down menu, select **Replicate**.

9. Look at the values in the C_T column. In the example experiment, the C_T values fall within the expected range (>8 and <35).

Tips for analyzing your own experiments

When you analyze your own Relative Standard Curve experiment, look for:

- Slope/amplification efficiency values The amplification efficiency is calculated using the slope of the regression line in the standard curve. A slope close to –3.3 indicates optimal, 100% PCR amplification efficiency. Factors that affect amplification efficiency:
 - Range of standard quantities For more accurate and precise efficiency measurements, use a broad range of standard quantities, 5 to 6 logs (10⁵ to 10⁶ fold).
 - Number of standard replicates For more accurate efficiency measurements, include replicates to decrease the effects of pipetting inaccuracies.
 - PCR inhibitors PCR inhibitors in the reaction can alter amplification efficiency.
- **R**² **values** (**correlation coefficient**) The R² value is a measure of the closeness of fit between the regression line and the individual C_T data points of the standard reactions. A value of 1.00 indicates a perfect fit between the regression line and the data points. An R² value >0.99 is desirable.
- C_T values The threshold cycle (C_T) is the PCR cycle number at which the fluorescence level meets the threshold.
 - A C_T value >8 and <35 is desirable.
 - A C_T value <8 indicates that there is too much template in the reaction.
 - A C_T value >35 indicates a low amount of target in the reaction; for C_T values
 >35, expect a higher standard deviation.

If your experiment does not meet the guidelines above, troubleshoot as follows:

- Omit wells (see "Improve C_T precision by omitting wells" on page 68).
 Or
- Rerun the experiment.

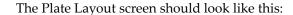
Assess amplification results using the Amplification Plot

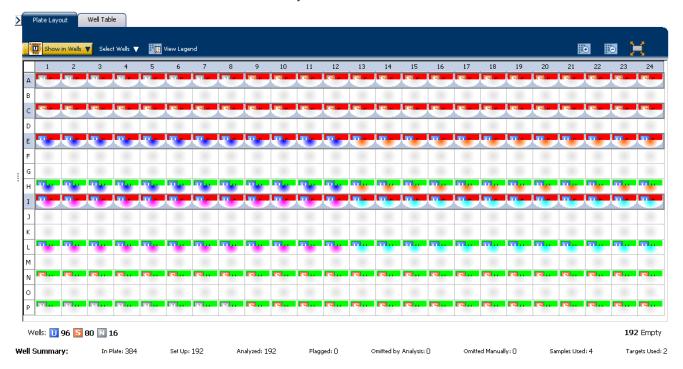
Amplification plots available for viewing

The Amplification Plot screen displays amplification of all samples in the selected wells. There are three plots available:

- ΔRn vs Cycle ΔRn is the magnitude of normalized fluorescence signal generated by the reporter at each cycle during the PCR amplification. This plot displays ΔRn as a function of cycle number. Use this plot to identify and examine irregular amplification and to view threshold and baseline values for the run.
- **Rn vs Cycle** Rn is the fluorescence signal from the reporter dye normalized to the fluorescence signal from the passive reference. This plot displays Rn as a function of cycle number. Use this plot to identify and examine irregular amplification.
- C_T vs Well C_T is the PCR cycle number at which the fluorescence meets the
 threshold in the amplification plot. This plot displays C_T as a function of well
 position. Use this plot to locate outlying amplification (outliers).

Each plot can be viewed as a linear or log10 graph type.


Purpose


The purpose of viewing the amplification plot for the example experiment is to identify:

- Correct baseline and threshold values
- Outliers

View the Amplification Plot

- From the Experiment Menu pane, select Analysis > Amplification Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display the FAS wells in the Amplification Plot screen:
 - **a.** Click the **Plate Layout** tab.
 - **b.** From the Select Wells drop-down menu, select **Target**, then **FAS**.

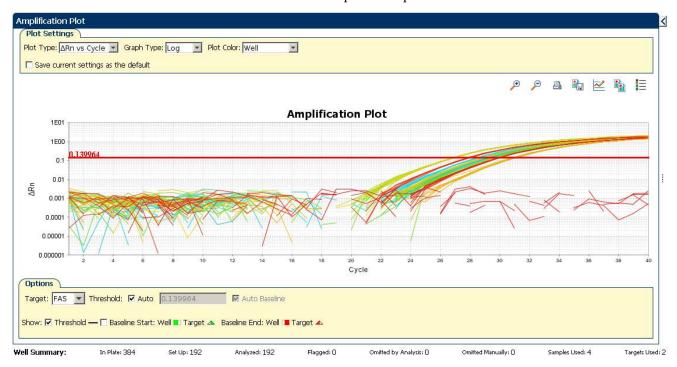
3. In the Amplification Plot screen, enter:

Menu	Selection
Plot Type	ΔRn vs Cycle (default)
Plot Color	Well (default)
(This is a toggle button. When the legend	Check (default)
is displayed, the button changes to Hide the plot legend.)	

4. View the baseline values:

- **a.** From the Graph Type drop-down menu, select **Linear**.
- **b.** Select the **Baseline** check box to show the start cycle and end cycle.

c. Verify that the baseline is set correctly: The end cycle should be set a few cycles before the cycle number where significant fluorescent signal is detected. In the example experiment, the baseline is set correctly.



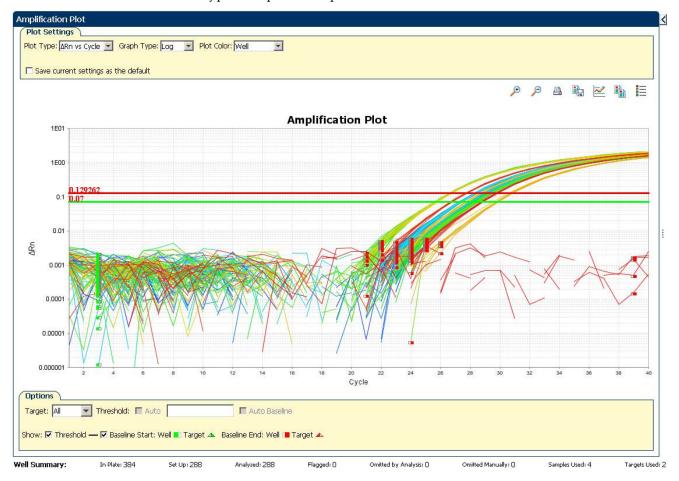
5. View the threshold values:

Menu	Select	
Graph Type	Log	
Target	FAS	

a. Select the **Threshold** check box to show the threshold.

b. Verify that the threshold is set correctly. In the example experiment, the threshold is in the exponential phase.

- **6.** Locate outliers:
 - **a.** From the Plot Type drop-down menu, select C_T vs Well.
 - **b.** Look for outliers from the amplification plot. In the example experiment, there are no outliers for FAS.

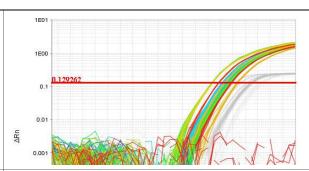

7. Repeat steps 2 through 6 for the HPRT wells.

Tips for analyzing your own experiments

When you analyze your own Relative Standard Curve experiment, look for:

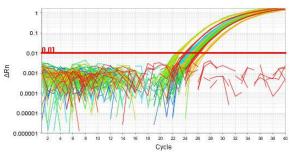
- Outliers
- A typical amplification plot The ViiA[™] 7 Software automatically calculates baseline and threshold values based on the assumption that the data exhibit a *typical* amplification plot. A typical amplification plot has four distinct sections:
 - Plateau phase
 - Linear phase
 - Exponential (geometric phase)
 - Baseline

A typical amplification plot should look like this:

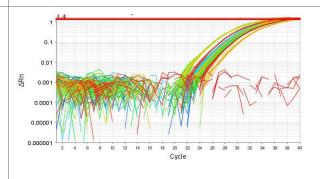

IMPORTANT! Experimental error (such as contamination or pipetting errors) can produce atypical amplification curves that can result in incorrect baseline and threshold value calculations by the ViiATM 7 Software. Therefore, Applied Biosystems recommends that you examine the Amplification Plot screen and review the assigned baseline and threshold values for each well after analysis completes.

• Correct threshold values.

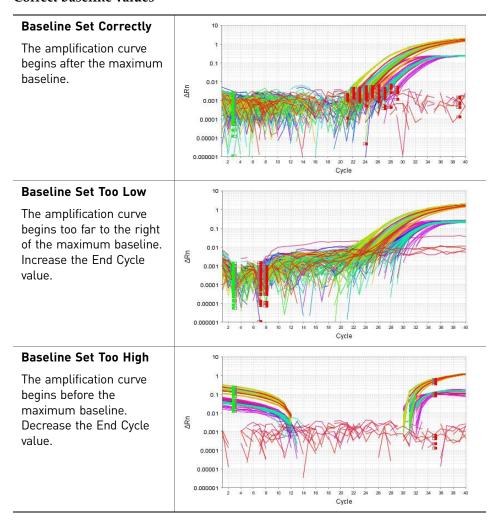
Threshold Set Correctly


The threshold is set in the exponential phase of the amplification curve.

Threshold settings above or below the optimum increase the standard deviation of the replicate groups.


Threshold Set Too Low

The threshold is set below the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar up into the exponential phase of the curve.



Threshold Set Too High

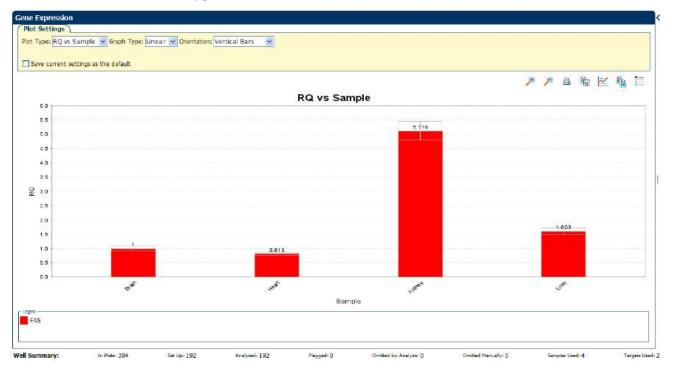
The threshold is set above the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar down into the exponential phase of the curve.

Correct baseline values

If your experiment does not meet the guidelines above, troubleshoot as follows:

- Omit wells (see "Improve C_T precision by omitting wells" on page 68). *Or*
- Manually adjust the baseline and/or threshold (see "Adjust analysis settings" on page 63).

Assess the gene expression profile using the Gene Expression Plot


The Gene Expression Plot screen displays the results of relative quantification calculations in the gene expression profile. There are two plots available:

• **RQ vs Target** – Groups the relative quantification (RQ) values by target. Each sample is plotted for each target. You can view the plot as the linear, log10, Ln, and log2 graph types. The Gene Expression plot when viewed as a linear graph type looks like this:

• RQ vs Sample – Groups the relative quantification (RQ) values by sample. Each target is plotted for each sample. You can view the plot as the linear, log10, Ln, and log2 graph types. The Gene Expression plot when viewed as a linear graph type looks like this:

Example experiment values

Review each target in the Gene Expression Plot screen for the expression level (or fold change) of the target sample relative to the reference sample.

View the Gene Expression Plot

- From the Experiment Menu pane, select Analysis > Gene Expression.
 Note: If no data are displayed, click Analyze.
- **2.** In the Gene Expression Plot screen:
 - **a.** From the Plot Type drop-down menu, select **RQ vs Sample**.
 - b. From the Graph Type drop-down menu, select Log10.
 - c. From the Orientation drop-down menu, select Vertical Bars.
- **3.** Click **Show a legend for the plot** (default).

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

In the example experiment, the expression level of FAS in heart, kidney, and liver is displayed relative to its expression level in the reference sample (brain). Since the reference sample is compared to itself, the relative expression level is 1. When the result is displayed in the Log10 graph type, the expression level of the reference sample appears as 0 in the graph (log10 of 1 = 0).

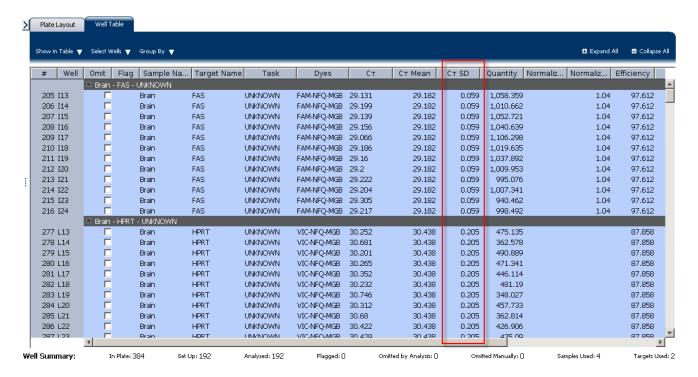
Assessing the gene expression plot in your own experiments

When you analyze your own Relative Standard Curve experiment, look for differences in gene expression (as a fold change) relative to the reference sample.

Identify well problems using the Well Table

The Well Table displays data for each well in the reaction plate, including:

- The sample name, target name, task, and dyes
- The calculated threshold cycle (*C*_T), normalized fluorescence (Rn), and quantity values
- Flags


Example experiment values and flags

Review the Well Table to evaluate the C_T precision of the replicate groups.

5

View the well table

- 1. From the Experiment Menu pane, select **Analysis** ▶ **Amplification Plot**, then click the **Well Table** tab.
- 2. From the Group By drop-down menu, select **Replicate**.
- **3.** Look at the C_T SD column to evaluate the C_T precision of the replicate groups. In the example experiment, the C_T SD have the expected value of < 0.5.

Note: To show or hide columns in the Well Table, select or deselect respectively the column name from the Show in Table drop-down menu.

Assessing the well table in your own experiments

When you analyze your own Relative Standard Curve experiment, look for standard deviation in the replicate groups (C_T SD values). If needed, omit outliers ("Improve C_T precision by omitting wells" on page 68).

Confirm accurate dye signal using the Multicomponent Plot

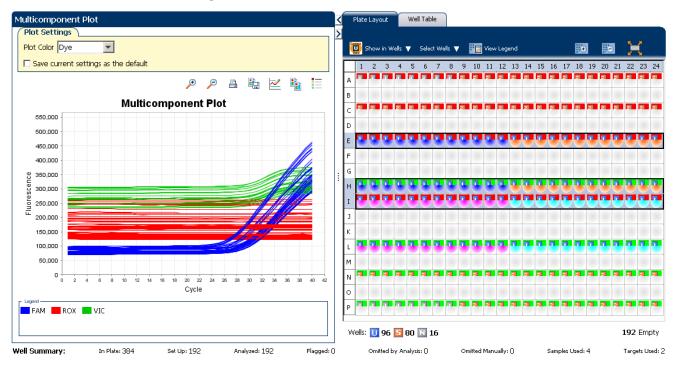
The Multicomponent Plot screen displays the complete spectral contribution of each dye in a selected well over the duration of the PCR run.

Purpose

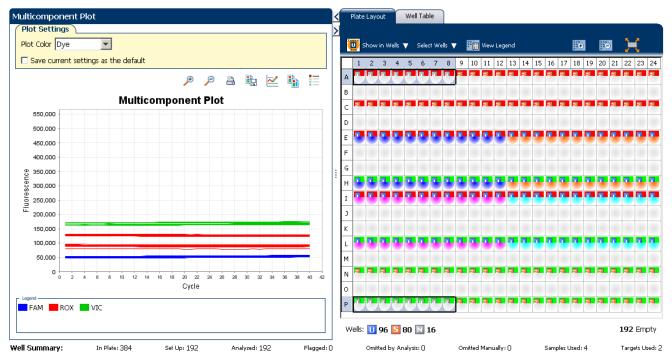
In the Relative Standard Curve example experiment, you review the Multicomponent Plot screen for:

- ROXTM dye (passive reference)
- FAMTM dye (reporter for RNase P)
- VIC® dye (reporter for IPC)
- Spikes, dips, and/or sudden changes
- Amplification in the negative control wells

View the Multicomponent Plot


- From the Experiment Menu pane, select Analysis ▶ Multicomponent Plot.
 Note: If no data are displayed, click Analyze.
- 2. Display the unknown and standard wells one at a time in the Multicomponent Plot screen:
 - a. Click the **Plate Layout** tab.
 - **b.** Select one well in the plate layout; the well is shown in the Multicomponent Plot screen.

Note: If you select multiple wells, the Multicomponent Plot screen displays the data for all selected wells simultaneously.


- **3.** From the Plot Color drop-down menu, select **Dye**.
- **4.** Click **Show a legend for the plot** (default).

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

Check the FAM and VIC dye signals. In the example experiment, the FAM and VIC dyes signal increase throughout the PCR process, indicating normal amplification.

- **6.** Check the ROX dye signal. In the example experiment, the ROX dye signal remains constant throughout the PCR process indicating typical data.
- **7.** Select the negative control wells one at time and check for amplification. In the example experiment, there is no amplification in any of the negative control wells.

Tips for confirming dye accuracy in your own experiment

When you analyze your own Relative Standard Curve experiment, look for:

- **Passive reference** The passive reference dye fluorescence level should remain relatively constant throughout the PCR process.
- **Reporter dye** The reporter dye fluorescence level should display a flat region corresponding to the baseline, followed by a rapid rise in fluorescence as the amplification proceeds.
- Irregularities in the signal There should not be any spikes, dips, and/or sudden changes in the fluorescent signal.
- Negative control wells There should not be any amplification in the negative control wells.

Determine signal accuracy using the Raw Data Plot

The Raw Data Plot screen displays the raw fluorescence signal (not normalized) for each optical filter for the selected wells during each cycle of the real-time PCR.

About the example experiment

In the Relative Standard Curve example experiment, you review the Raw Data Plot screen for a stable increase in signal (no abrupt changes or dips) from the appropriate filter.

View the Raw Data Plot

- From the Experiment Menu pane, select Analysis ➤ Raw Data Plot.
 Note: If no data are displayed, click Analyze.
- 2. Display all 384 wells in the Raw Data Plot screen by clicking the upper left corner of the plate layout in the Plate Layout tab.
- 3. Click Show a legend for the plot (default). The legend displays the color code for each row of the reaction plate (see the legend in the Raw Data Plot shown below).

4. Click and drag the Show Cycle pointer from cycle 1 to cycle 40. In the example experiment, there is a stable increase in signal from filter 1, which corresponds to the FAMTM dye filter.

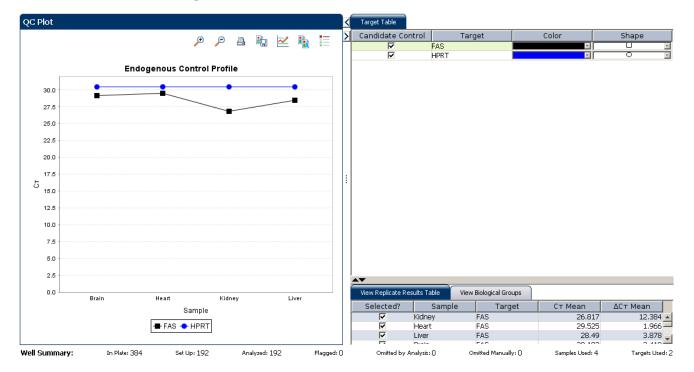
The filters used for the example experiment are:

Tips for determining signal accuracy in your own experiment

When you analyze your own Relative Standard Curve experiment, look for the following in each filter:

- Characteristic signal growth
- No abrupt changes or dips

View the endogenous control profile using the QC Plot


In the Relative Standard Curve experiment, the QC Plot screen displays the Endogenous Control Profile plot for all the targets in the experiment. The QC Plot serves as a tool to help users choose the best endogenous control for that experiment. The endogenous control profile plot is a visual display of the C_T level of the endogenous control across the sample. You can view up to four endogenous controls at a time. The sample is plotted on the X-axis, and the C_T is plotted on the Y-axis. The expression is viewed as a color and shape combination in the plot. Endogenous controls are also known as reference genes.

To view the QC Plot:

- 1. From the Experiment Menu pane, select **Analysis** ▶ **QC Plot**.
 - **Note:** If no data are displayed, click **Analyze**.
- **2.** In the QC Plot screen, click **Target Table** to select a target to profile:
 - **a.** In the Candidate Control column, select the check box of the target of the endogenous control profile to plot. In the example experiment, the endogenous control is HPRT.
 - **b.** Select a color from the Color drop-down menu.
 - **c.** Select a shape from the Shape drop-down menu.
- 3. Click the **View Replicate Results Table**.
- **4.** Select the check box of the samples you want to plot.
- **5.** Click **Show a legend for the plot** (default).

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

The QC Plot in the Relative Standard Curve example experiment looks like this. Note that the endogenous control, HPRT is expressed at the same level in all the four samples:

This example experiment does not define Biological Groups.

Review the QC flags in the QC Summary

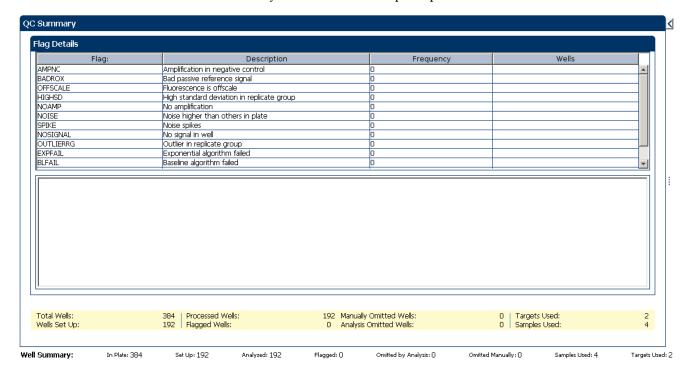
The QC Summary screen displays a list of the ViiA™ 7 Software flags, including the flag frequency and location for the open experiment.

View the QC Summary

1. From the Experiment Menu pane, select **Analysis** ▶ **QC Summary**.

Note: If no data are displayed, click **Analyze**.

2. Review the Flags Summary.


Note: A 0 displayed in the Frequency column indicates that the flag does not appear in the experiment. If the frequency is > 0, the flag appears somewhere in the experiment; the well position is listed in the Wells column.

In the example experiment, there are no flagged wells.

3. In the Flag Details table, click each flag with a frequency > 0 to display detailed information about the flag. In the example experiment, the Frequency column displays 0 for all flags.

4. (*Optional*) For those flags with frequency > 0, click the troubleshooting link to view information on correcting the flag.

The QC Summary screen for the example experiment looks like this:

Possible flags

The flags listed below may be triggered by the experiment data.

Flag	Description	
Pre-processing flag		
OFFSCALE	Fluorescence is offscale	
Primary analysis flags		
BADROX	Bad passive reference signal	
NOAMP	No amplification	
NOISE	Noise higher than others in plate	
SPIKE	Noise spikes	
NOSIGNAL	No signal in well	
EXPFAIL	Exponential algorithm failed	
BLFAIL	Baseline algorithm failed	
THOLDFAIL	Thresholding algorithm failed	
CTFAIL	C _T algorithm failed	
Secondary analysis flags		
OUTLIERRG	Outlier in replicate group	

Flag	Description	
AMPNC	Amplification in negative control	
HIGHSD	High standard deviation in replicate group	

Note: When you use the Relative Threshold algorithm, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag).

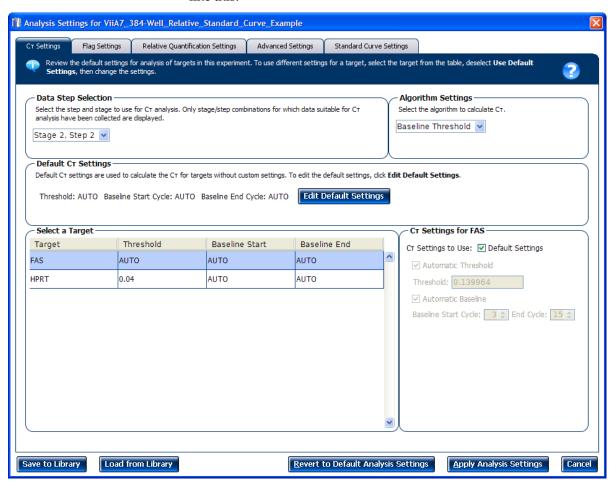
For more information

For more information on	Refer to	Part number
Publishing data	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments.	4441434

Section 5.2 Adjust parameters for re-analysis of your own experiments

Adjust analysis settings

The Analysis Settings dialog box displays the analysis settings for the threshold cycle (C_T) , flags, and advanced options.


If the default analysis settings in the ViiATM 7 Software are not suitable for your own experiment, you can change the settings in the Analysis Settings dialog box, then reanalyze your experiment.

View the analysis settings

- 1. From the Experiment Menu pane, select **Analysis**.
- **2.** Click **Analysis** ▶ **Analysis Settings** to open the Analysis Settings dialog box. In the example experiment, the default analysis settings are used for each tab:
 - C_T Settings
 - Flag Settings
 - Relative Quantification Settings
 - Advanced Settings
 - Standard Curve Settings

The Analysis Settings dialog box for a Relative Standard Curve experiment looks like this:

3. View and, if necessary, change the analysis settings (see "Adjust analysis settings" below).

Note: You can save the changes to the analysis settings to the Analysis Settings Library for later use. For more information, see About the Analysis Settings Library in Booklet 1, *Getting Started with ViiA*TM 7 System Experiments.

4. Click **Apply Analysis Settings** to apply the current analysis settings.

Note: You can go back to the default analysis settings, by clicking **Revert to Default Analysis Settings**.

Adjust analysis settings

C_T Settings

Data Step Selection

Use this feature to select one stage/step combination for C_T analysis when there is more than one data collection point in the run method.

Algorithm Settings

You can select the algorithm that determines the C_T values. There are two algorithms: Baseline Threshold (the default) and Relative Threshold.

The Baseline Threshold algorithm is an expression estimation algorithm that subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

The Relative Threshold algorithm lets you compare the data on a per-well or pertarget basis. This setting is ideal for analyzing a single gene across samples or a single sample across genes with no dependence on targets, thereby reducing variability. Any settings for baseline or threshold do not affect the analysis when you use the Relative Threshold algorithm.

• Default C_T Settings

Use the default C_T settings feature to calculate C_T for the targets that do not have custom settings. To edit the default settings, click **Edit Default Settings**.

• C_T Settings for Target

When you manually set the threshold and baseline, Applied Biosystems recommends:

Setting	Recommendation
Threshold	Enter a value for the threshold so that the threshold is:
	Above the background.
	Below the plateau and linear regions of the amplification curve.
	Within the exponential phase of the amplification curve.
Baseline	Select the Start Cycle and End Cycle values so that the baseline ends before significant fluorescent signal is detected.

Note: This setting is applicable only to the Baseline Threshold algorithm.

Note: Selecting Automatic Threshold implies selection of automatic setting of the baseline. However, if Automatic Threshold is deselected, then you can choose between setting the baseline either automatically or manually.

Flag Settings

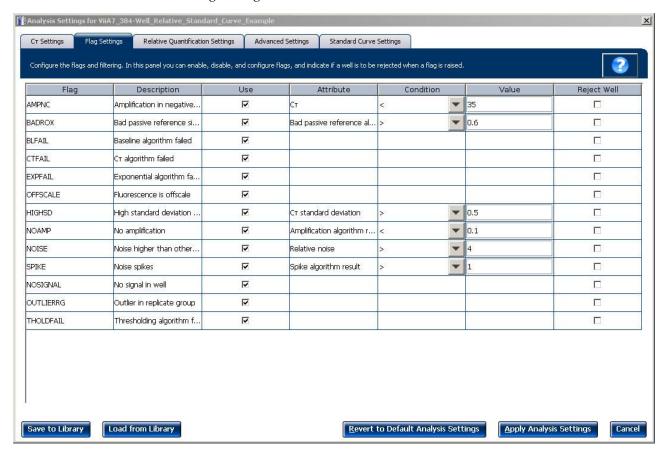
Use the Flag Settings tab to:

- Adjust the sensitivity so that more wells or fewer wells are flagged.
- Change the flags that are applied by the ViiATM 7 Software.

To adjust the flag settings

- 1. In the Use column, select the check boxes for flags to apply during analysis.
- **2.** (*Optional*) If an attribute, condition, and value are listed for a flag, specify the setting for applying the flag.

Note: If you choose to adjust the setting for applying a flag, make minor adjustments as you evaluate the appropriate setting.


3. In the Reject Well column, select the check boxes if you want the software to reject wells with the flag.

Note: After you have rejected the flagged wells, analysis results depend on factors such as the experiment type and flag type. For example, rejecting wells flagged by HIGHSD in experiments using the Standard Deviation calculations may change the result of C_T SD. For some flags, analysis results calculated before the well is rejected are maintained.

4. Click **Apply Analysis Settings** in the Analysis Settings dialog box. If the run status is complete, the data are reanalyzed.

The Flag Settings tab looks like this:

Relative Quantification Settings Use the Relative Quantification Settings tab to:

- Change the type of analysis, singleplex or multiplex.
- Change the reference sample and/or endogenous control.
- Reject Outliers with ΔC_T values less than or equal to the entered value.

Note: The Outlier Rejection settings apply only to multiplex reactions.

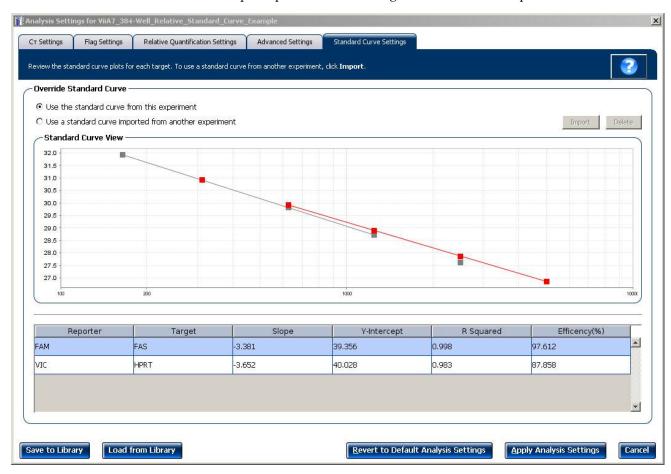
- Select the algorithm to use to determine the relative quantification minimum and maximum values (error bars):
 - Confidence Level Select to calculate the RQ minimum and maximum values based on the selected confidence level. Select the confidence level to use.
 - Standard Deviations Select to calculate the RQ minimum and maximum values based on the selected number of standard deviations. Select the number of standard deviations to use.

Advanced Settings

Use the Advanced Settings tab to change baseline settings well-by-well.

Note: The baseline and threshold values do not affect the analysis using the Relative Threshold setting.

To use custom baseline settings for a well-target combination:


- 1. Select one or more well-target combinations in the table.
- **2.** Deselect the **Use** C_T **Settings Defined for Target** check box.
- **3.** Define the custom baseline settings:
 - For automatic baseline calculations, select the Automatic Baseline check box.
 - To define the baseline, deselect the **Automatic Baseline** check box, then enter the baseline start cycle and baseline end cycle.

Standard Curve Settings

Use this tab to review the settings of the current standard curve experiment or to import the standard curve from an external experiment (with the same samples and targets) and apply it to this current experiment.

Note: The run method must be the same. Applied Biosystems recommends using the standard curve from the current experiment.

For the example experiment, the settings from the current experiment have been used.

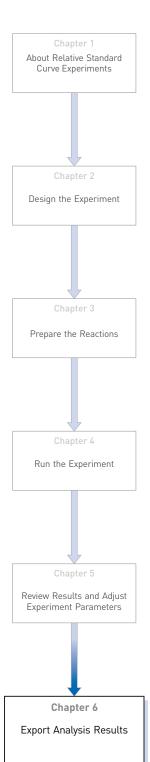
Improve C_T precision by omitting wells

Experimental error may cause some wells to be amplified insufficiently or not at all. These wells typically produce C_T values that differ significantly from the average for the associated replicate wells. If included in the calculations, these outliers can result in erroneous measurements; to ensure C_T precision, omit the outliers from the analysis.

Note: In the Relative Standard Curve example experiment, there are no outliers. No wells need to be removed from analysis.

- From the Experiment Menu pane, select Analysis ➤ Amplification Plot.
 Note: If no data are displayed, click Analyze.
- In the Amplification Plot screen, select C_T vs. Well from the Plot Type drop-down menu.
- **3.** Select the **Well Table** tab, select replicates to omit:
- **4.** In the Well Table:
 - a. From the Group By drop-down menu, select Replicate.
 - **b.** Look for outliers in the replicate group (make sure they are flagged).
 - **c.** Select the **Omit** check box next to outlying well(s), as shown below.

5. Click **Analyze** to reanalyze the experiment data with the outlying well(s) removed from the analysis.


Note: You can also omit undesirable wells in an experiment from the Plate Layout screen. To omit a well from the Plate Layout screen, right-click the well and select **Omit**.

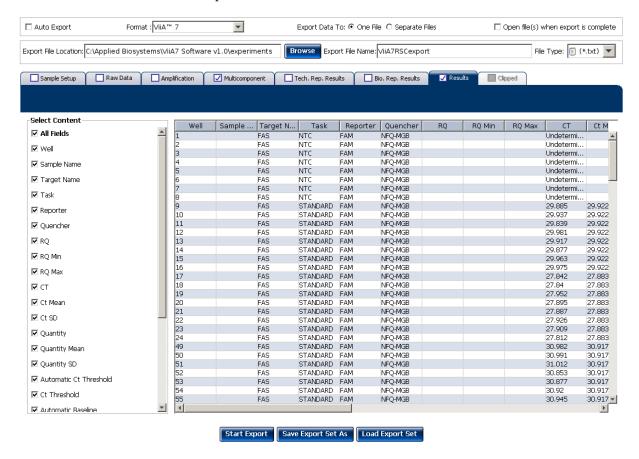
For more information

For more information on	Refer to	Part number
Amplification efficiency	Amplification Efficiency of TaqMan® Gene Expression Assays Application Note	127AP05-03

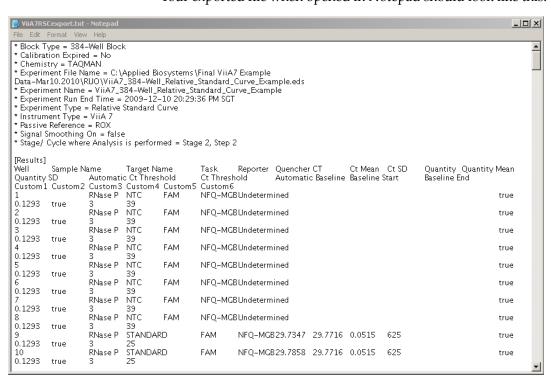
Export Analysis Results

- 1. Open the Relative Standard Curve example experiment file that you analyzed in Chapter 5.
- 2. In the Experiment Menu, click Export.

Note: To export data automatically after analysis, select the **Auto Export** check box during experiment setup or before running the experiment. Auto export is unchecked for the example experiment.

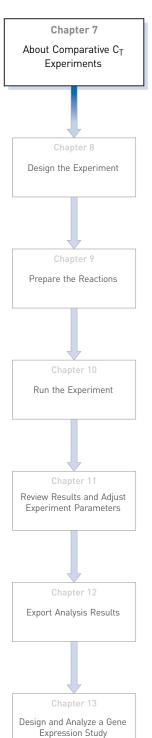

3. Select ViiATM7 Format.

Note: Select 7900 Format if you want to export the Clipped Data.


4. Complete the Export dialog box as shown below:

Field or Selection	Entry
Select Data to export/ Select Content	Results
Export Data To	One File
Export File Name	ViiA7RSCexport
File Type	*.txt
Export File Location	<drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments</drive>

Your Export screen should look like this:


Your exported file when opened in Notepad should look like this:

$\label{eq:partial} PART\ II$ Running Comparative C_T Experiments

About Comparative C_T Experiments

This chapter covers:

IMPORTANT! First-time users of the ViiATM 7 System, please read Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments* and Booklet 7, *ViiA*TM 7 *System Experiments - Appendixes* of this binder thoroughly. The booklets provide information and general instructions that are applicable to all the experiments described in this binder.

Note: For more information about any of the topics discussed in this guide, access the Help from within Applied Biosystems ViiA[™] 7 Software by pressing **F1**, clicking in the toolbar, or selecting **Help ▶ ViiA[™] 7 Software Help**.

About Comparative C_T experiments

The Comparative CT ($\Delta\Delta C_T$) method is used to determine the relative target quantity in samples. With the comparative C_T method, the ViiATM 7 Software measures amplification of the target and of the endogenous control in samples and in a reference sample. Measurements are normalized using the endogenous control. The software determines the relative quantity of target in each sample by comparing normalized C_T (ΔC_T) in each sample to normalized C_T (ΔC_T) in the reference sample.

Comparative C_T experiments are commonly used to:

- Compare expression levels of a gene in different tissues.
- Compare expression levels of a gene in a treated sample and an untreated sample.
- Compare expression levels of wild-type alleles and mutated alleles.
- Analyze the gene expression changes over time under specific treatment conditions.

Assemble required components

- Sample The tissue group that you are testing for a target gene.
- **Reference sample (also called a calibrator)** The sample used as the basis for relative quantification results. For example, in a study of drug effects on gene expression, an untreated control is an appropriate reference sample.
- Endogenous control A gene that is used to normalize template input differences, and sample-to-sample or run-to-run variation.
- Replicates The total number of identical reactions containing identical components and identical volumes.
- **Negative controls** Wells that contain water or buffer instead of sample template. No amplification of the target should occur in negative control wells.

PCR options

When performing real-time PCR, choose between:

- Singleplex and multiplex PCR (below)
 and
- 1-step and 2-step RT-PCR (page 77)

Singleplex and Multiplex PCR

You can perform a PCR reaction using either:

• **Singleplex PCR** – In singleplex PCR a single primer and probe set is present in the reaction tube or well. Only one target or endogenous control can be amplified per reaction.

Or

Multiplex PCR – In multiplex PCR, two or more primer and probe sets are
present in the reaction tube or well. Each set amplifies a specific target or
endogenous control. Typically, a probe labeled with FAM[™] dye detects the target
and a probe labeled with VIC[®] dye detects the endogenous control.

IMPORTANT! SYBR[®] Green reagents cannot be used for multiplex PCR.

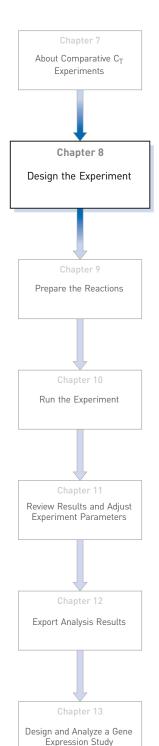
1- and 2-Step RT-PCR You can perform reverse transcription (RT) and PCR in a single reaction (1-step) or in separate reactions (2-step). The reagent configuration you use depends on whether you are performing 1- or 2-step RT-PCR:

- 1-step RT-PCR- In 1-step RT-PCR, RT and PCR take place in one buffer system. Using one buffer system provides the convenience of a single-tube preparation for RT and PCR amplification. However, you cannot use Fast PCR Master Mix or the carryover prevention enzyme, AmpErase[®] UNG (uracil-N-glycosylase), to perform 1-step RT-PCR.
- **2-step RT-PCR** 2-step RT-PCR is performed in two separate reactions: First, total RNA is reverse-transcribed into cDNA, then the cDNA is amplified by PCR. This method is useful for detecting multiple transcripts from a single cDNA template or for storing cDNA aliquots for later use. The AmpErase[®] UNG enzyme can be used to prevent carryover contamination.

About the example experiment

To illustrate how to perform comparative C_T experiment, this guide leads you through the process of designing and performing an example experiment. The example experiment represents a typical setup that you can use to quickly familiarize yourself with the $ViiA^{TM}$ 7 System.

The objective of the comparative C_T example experiment is to compare the expression of GH1, LPIN1, LIPC, GAPDH, and ACTB in liver, heart, brain, and lung tissues.


- The samples are liver, heart, lung, and brain tissues.
- The targets are GH1, LPIN1, LIPC, GAPDH, and ACTB.
- The reference sample is brain.
- The endogenous control is ACTB.
- The experiment is designed for singleplex PCR, where the targets and endogenous control assays are performed in separate wells.

- Reactions are set up for 2-step RT-PCR. The Invitrogen VILO Kit is used for reverse transcription; the TaqMan[®] Fast Universal PCR Master Mix is used for PCR.
- Primer and probe sets are selected from the Applied Biosystems TaqMan® Gene Expression Assays product line:

GH1 Assay Mix: Hs00236859_m1
LPIN1 Assay Mix: Hs00299515_m1
LIPC Assay Mix: Hs00165106_m1
GAPDH Assay Mix: Hs99999905_m1
ACTB Assay Mix: Hs99999903_m1

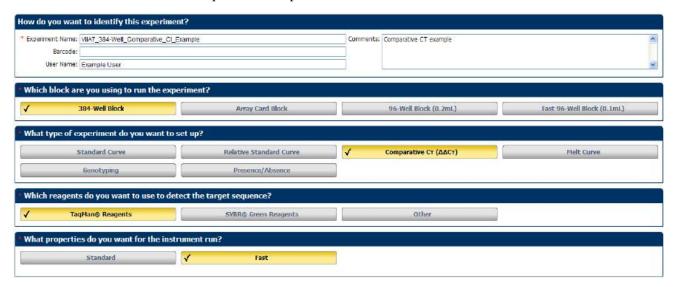
Design the Experiment

This chapter explains how to design the example experiment from the Experiment Setup menu.

This chapter covers:

Define the experiment properties	80
Define targets, samples and biological replicates	81
Assign targets, samples and biological groups	83
Set up the run method	84
Order materials for the experiment	85
Tips for designing your own experiment	86
For more information	87

Note: To automatically export the analyzed data to a specified location, select the Auto Export task from the Export screen, before running the experiment. For more information on Auto Export, refer to Chapter 1 in Booklet 1, *Getting Started with ViiA* $^{\text{TM}}$ 7 *System Experiments*.


Define the experiment properties

Click **Experiment Setup** ▶ **Experiment Properties** to create a new experiment in the ViiA[™] 7 Software. Enter:

Field or Selection	Entry
Experiment Name	ViiA7_384-Well_Comparative_Ct_Example
Barcode	Leave field empty
User Name	Example User
Comments	Comparative C _T example
Block	384-Well Block
Experiment Type	Comparative C_T ($\Delta\Delta C_T$)
Reagents	TaqMan [®] Reagents
Ramp speed	Fast

Save the experiment.

Your Experiment Properties screen should look like this:

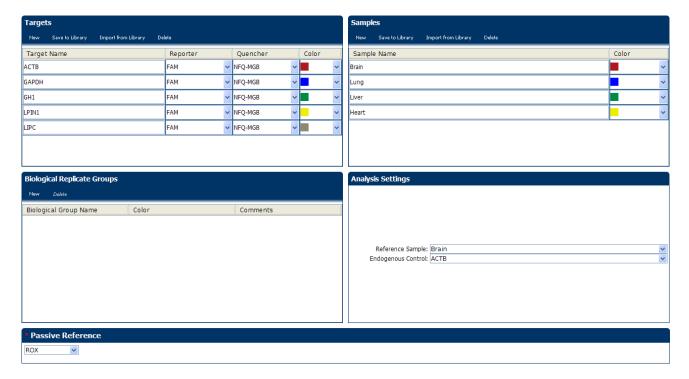
Define targets, samples and biological replicates

Click **Define** to access the Define screen. Enter:

1. Targets

Target name	Reporter	Quencher	Color
ACTB	FAM	NFQ-MGB	
GAPDH	FAM	NFQ-MGB	
GH1	FAM	NFQ-MGB	
LPIN1	FAM	NFQ-MGB	
LIPC	FAM	NFQ-MGB	

2. Samples

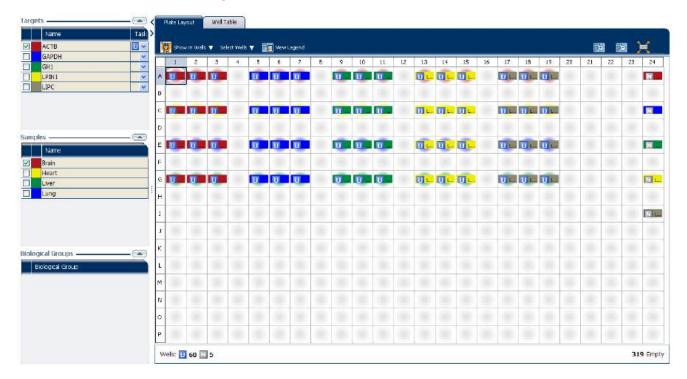

Sample Name	Color
Brain	
Lung	
Liver	
Heart	

3. Dye to be used as a Passive Reference ROX

4. Analysis Settings

Field	Select
Reference Sample	Brain
Endogenous Control	ACTB

Your Define screen should look like this:

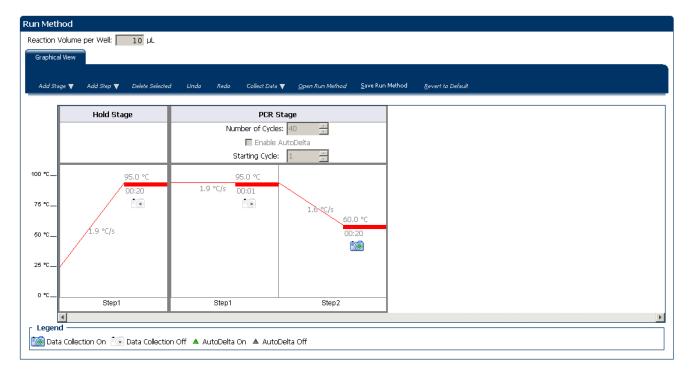

Note: This example experiment does not define biological replicate groups. Leave Biological Replicate Groups blank.

Assign targets, samples and biological groups

Click **Assign** to access the Assign screen. Enter the targets and samples:

Target name	Well number	Task	Sample name
ACTB	A1, A2, A3	Unknown	Brain
	C1, C2, C3	Unknown	Heart
	E1, E2, E3	Unknown	Lung
	G1, G2, G3	Unknown	Liver
	A24	Negative	None
GAPDH	A5, A6, A7	Unknown	Brain
	C5, C6, C7	Unknown	Heart
	E5, E6, E7	Unknown	Lung
	G5, G6, G7	Unknown	Liver
	C24	Negative	None
GH1	A9, A10, A11	Unknown	Brain
	C9, C10, C11	Unknown	Heart
	E9, E10, E11	Unknown	Lung
	G9, G10, G11	Unknown	Liver
	E24	Negative	None
LPIN1	A13, A14, A15	Unknown	Brain
	C13, C14, C15	Unknown	Heart
	E13, E14, E15	Unknown	Lung
	G13, G14, G15	Unknown	Liver
	G24	Negative	None
LIPC	A17, A18, A19	Unknown	Brain
	C17, C18, C19	Unknown	Heart
	E17, E18, E19	Unknown	Lung
	G17, G18, G19	Unknown	Liver
	I24 (Row I, Column 24)	Negative	None

Your Assign screen should look like this:


Set up the run method

Click **Run Method** to access the Run Method screen. Set the thermal profile under the Graphical View tab. Enter:

- Reaction Volume Per Well: 10µl
- Thermal Profile

Stage	Step	Ramp rate	Temperature	Time
Hold Stage	Step 1	1.9 °C/s	95 °C	20 seconds
PCR Stage	Step 1	1.9 °C/s	95 °C	1 second
Number of Cycles: 40	Step 2	1.6 °C/s	60 °C	20 seconds
Enable AutoDelta: Unchecked (default)				
Starting Cycle: Disabled when Enable AutoDelta is unchecked				

Your Run Method screen should look like this:

Order materials for the experiment

The recommended materials are:

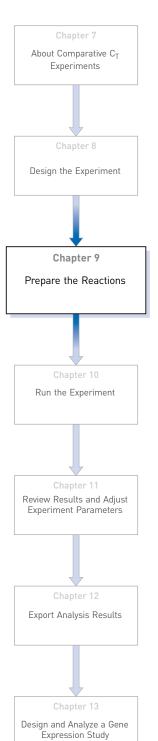
- MicroAmp® Optical 384-Well Reaction Plate
- MicroAmp® Optical Adhesive Film
- TaqMan[®] Fast Universal PCR Master Mix (2X), No AmpErase[®] UNG
- GH1 Assay Mix: Hs00236859_m1
- LPIN1 Assay Mix: Hs00299515_m1
- LIPC Assay Mix: Hs00165106_m1
- GAPDH Assay Mix: Hs99999905_m1
- ACTB Assay Mix: Hs99999903_m1

Your Materials List screen should look like this:

Tips for designing your own experiment

Applied Biosystems recommends that you:

- Identify each target assay with a unique name and color. You can enter up to 100 characters in the Target Name field.
- Identify each sample using a unique name and color. You can enter up to 100 characters in the Sample Name field.
- Select an endogenous control for each sample. The endogenous control is a target
 that is present in all samples under investigation. It should be expressed equally
 in all sample types, regardless of treatment or tissue origin (examples of
 endogenous controls are β-actin, GAPDH, and 18S ribosomal RNA [18S rRNA]).
 The endogenous control is used to normalize the PCR results; the endogenous
 control corrects for variable sample mass, nucleic acid extraction efficiency,
 reverse transcription efficiency, and pipette calibration errors. Note that:
 - Each sample type (for example, each tissue in a study comparing multiple tissues) requires an endogenous control.
 - If samples are spread across multiple plates, each plate must have an endogenous control. Additionally, every plate must include an endogenous control for every sample type on the plate.
- Select an endogenous control from your previously defined target assays.
 Amplification results from the endogenous control are used to normalize the amplification results from the target for differences in the amount of template added to each reaction.
- Select a reference sample from your previously defined samples. Amplification results from the samples and from the reference sample are compared to determine relative expression.


86

For more information

For more information on	Refer to	Part number	
Consumables	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments	4441434	
	Appendix A in Booklet 7, ViiA [™] 7 System Experiments - Appendixes		
Using the Standard Curve quantification methods	Booklet 2, Running Standard Curve Experiments.	4441434	
Using the relative standard curve quantification method	Part 1 of this booklet	4441434	
Selecting an endogenous control	Application Note Using TaqMan [®] Endogenous Control Assays to Select an Endogenous Control for Experimental Studies	127AP05-03	
Reference samples (also known as calibrators) and endogenous controls	User Bulletin #2: Relative quantification of Gene Expression	4303859	
Using alternative setup	Chapter 2 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments	4441434	

9

Prepare the Reactions

This chapter explains how to prepare the PCR reactions for the Comparative C_T ($\Delta\Delta C_T$) example experiment.

This chapter covers:

Assemble required materials	90
Prepare the template	90
Prepare the sample dilutions	90
Prepare the reaction mix ("cocktail mix")	91
Prepare the reaction plate	92
Tips for preparing reactions for your own experiments	93
For more information	93

Assemble required materials

- Items listed in Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments*
- Samples Total RNA isolated from liver, heart, brain, and lung tissues.
- Example experiment reaction mix components:
 - TaqMan[®] Fast Universal PCR Master Mix (2X.)
 - ACTB Assay Mix (20X)
 - GAPDH Assay Mix (20X)
 - GH1 Assay Mix (20X)
 - LIPN1 Assay Mix (20X)
 - LIPC Assay Mix (20X)

Prepare the template

Prepare the template for the PCR reactions using the High-Capacity cDNA Reverse Transcription Kit or one of the Invitrogen VILO kits to carry out the reverse transcription.

Example experiment settings

For the Comparative C_T example experiment, the template for the PCR reactions is cDNA reverse-transcribed from total RNA samples using one of the Invitrogen VILO kits, SuperScript[®] VILOTM cDNA Synthesis Kit (PN 4453650).

Prepare the template

Use the Invitrogen VILO kits to reverse-transcribe cDNA from the total RNA samples. Follow the procedures in the *Invitrogen VILO Kits Protocol* (PN 100002284) to:

- 1. Prepare the RT master mix.
- **2.** Prepare the cDNA reactions.
- Perform reverse transcription on a thermal cycler.

Prepare the sample dilutions

For the Comparative C_T example experiment, no more than 10% of your reaction should consist of the undiluted RT product.

- 1. Label a separate microcentrifuge tube for each diluted sample:
 - Liver
 - Heart
 - Brain
 - Lung

2. Add the required volume of water (diluent) to each empty tube:

Tube	Sample name	Diluent volume (µL)
1	Liver	19
2	Heart	19
3	Brain	19
4	Lung	19

3. Add the required volume of cDNA sample stock (100 $ng/\mu L$) to each empty tube:

Tube	Sample name	Volume (µL)
1	Liver	1.0
2	Heart	1.0
3	Brain	1.0
4	Lung	1.0

- **4.** Vortex each diluted sample for 3 to 5 seconds, then centrifuge the tubes briefly.
- **5.** Place the diluted samples on ice until you prepare the reaction plate.

Prepare the reaction mix ("cocktail mix")

- 1. Label an appropriately sized tube for each reaction mix:
 - ACTB Reaction Mix
 - GAPDH Reaction Mix
 - GH1 Reaction Mix
 - LPIN1 Reaction Mix
 - LIPC Reaction Mix
- **2.** For the ACTB assay, add the required volumes of each component to the ACTB Reaction Mix tube:

Component	Volume (µL) for 1 reaction	Volume (µL) for 13 reactions (plus 10% excess)
TaqMan® Fast Universal PCR Master Mix (2X)	5.0	75.0
ACTB Assay Mix (20X)	0.5	7.5
Water	3.5	52.5
Total Reaction Mix Volume	9.0	135.0

- **3.** Mix the reaction mix in each tube by gently pipetting up and down, then cap each tube.
- **4.** Centrifuge the tubes briefly to remove air bubbles.

- **5.** Place the reaction mixes on ice until you prepare the reaction plate.
- **6.** Repeat steps 2 through 5 for the GAPDH, GH1, LPIN1, and LIPC assays. **Note:** Do not add the sample at this time.


Prepare the reaction plate

Example experiment reaction plate components

The reaction plate for the Comparative C_T example experiment contains:

- A MicroAmp® Optical 384-Well Reaction Plate
- Reaction volume: 10µL/well
- The reaction plate contains:
 - 60 Unknown wells U
 - 5 Negative control wells
 - 319 Empty wells

The plate layout for the example experiment looks like this:

To prepare the reaction plate components

- 1. Add 1µL of each cDNA to the appropriate wells.
- 2. Pipette 1µL of sterile water into the NTC wells.
- 3. Add 8µL of the appropriate assay-specific cocktail to the wells.

- **4.** Seal the reaction plate with optical adhesive film.
- **5.** Centrifuge the reaction plate briefly to remove air bubbles.
- **6.** Confirm that the liquid is at the bottom of each well of the reaction plate. If not, centrifuge the reaction plate again at a higher speed and for a longer period of time.
- **7.** Until you are ready to perform the run, place the reaction plate at 4 °C, in the dark.

Tips for preparing reactions for your own experiments

Tips for preparing templates

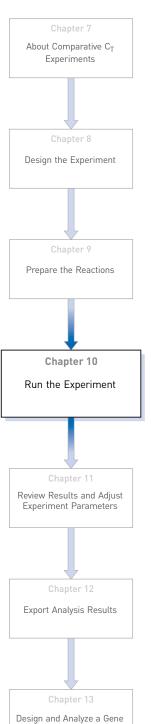
When you prepare your own Comparative C_T experiment, Applied Biosystems recommends the following templates:

- **Complementary DNA (cDNA)** cDNA reverse-transcribed from total RNA samples.
- **Genomic DNA (gDNA)** Purified gDNA already extracted from tissue or sample.

Tips for preparing the reaction mix

If your experiment includes more than one target assay, prepare the reaction mix for each target assay separately.

Tips for preparing the reaction plate


When you prepare your own Comparative C_T experiment, make sure the arrangement of the PCR reactions matches the plate layout displayed in the ViiATM 7 Software.

For more information

For more information on	Refer to	
Assigning the reaction plate components	Chapter 1 in Booklet 1, Getting Started with ViiA [™] 7 System Experiments	4441434
Sealing the reaction plate	Chapter 1 in Booklet 1, Getting Started with ViiA [™] 7 System Experiments	4441434

10

Run the Experiment

Expression Study

This chapter explains how to run the example experiment on the $ViiA^{\text{TM}}$ 7 Instrument. This chapter covers:

- Monitor the run. 96

IMPORTANT! Run the experiment at the same ambient temperature at which you calibrated the instrument. Extreme variations in ambient temperature can affect the heating and cooling of the instrument and influence experimental results.

IMPORTANT! Do not attempt to open the access door during the run. The door is locked while the $ViiA^{TM}$ 7 Instrument is in operation.

Start the run

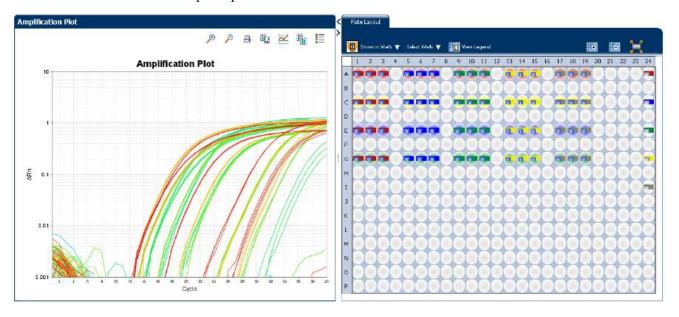
- 1. Open the Comparative C_T example file that you created using instructions in Chapter 8.
- 2. Load the reaction plate into the instrument.
- **3.** Start the run.

Monitor the run

Monitor the example experiment run:

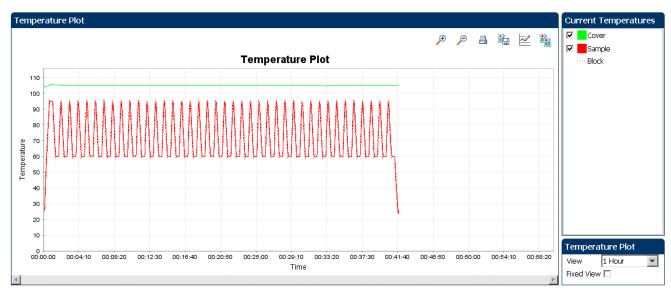
- From the ViiATM 7 Software using the Run screen, while the experiment is in progress.
- From the Instrument Console of the ViiATM 7 Software (to monitor an experiment started from another computer or from the ViiATM 7 Instrument touchscreen).
- From the ViiATM 7 Instrument touchscreen.

From the Instrument Console of the ViiA™ 7 Software


- 1. In the Instrument Console screen, select the instrument icon.
- **2.** Click **Manage Instrument** or double-click on the instrument icon.
- **3.** In the Manage Instrument screen, click **Monitor Running Experiment** to access the Run screen.

96

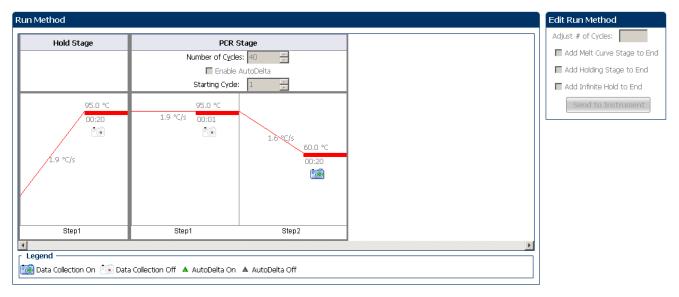
View the Amplification Plot You can view the progress of the run in real time. During the run, periodically view all the three plots available from the $ViiA^{TM}$ 7 Software for potential problems.


Click **Amplification Plot** from the Run Experiment Menu, select the Plate Layout tab, then select the wells t to view.

The figure below shows the Amplification Plot screen as it appears at the end of the example experiment.

View the Temperature Plot Click **Temperature Plot** from the Run Experiment Menu.

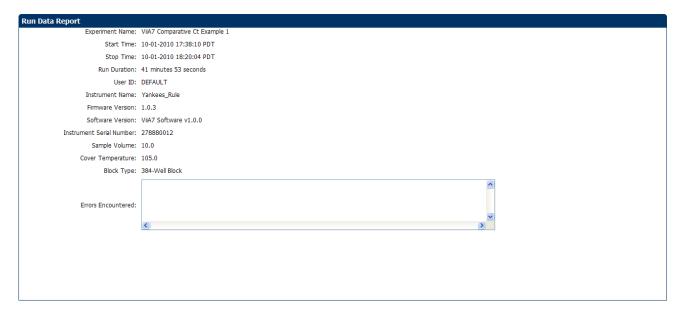
The figure below shows the Temperature Plot screen as it appears during the example experiment.


Note: The Sample temperature displayed in the Current Temperatures group is an estimated value.

Chapter 10 Run the Experiment Monitor the run

View the Run Method

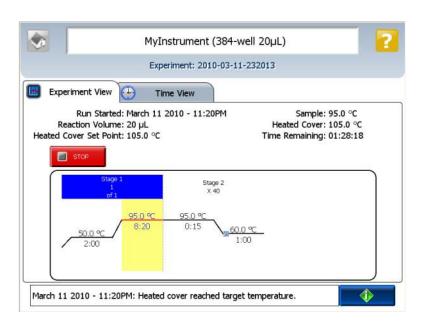
Click Run Method from the Run Experiment Menu.


The figure below shows the Run Method screen as it appears in the example experiment.

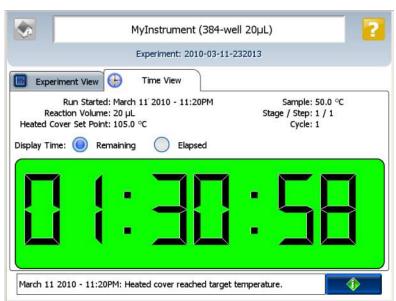
View Run Data

Click View Run Data from the Run Experiment Menu.

Your View Run Data screen should like this:

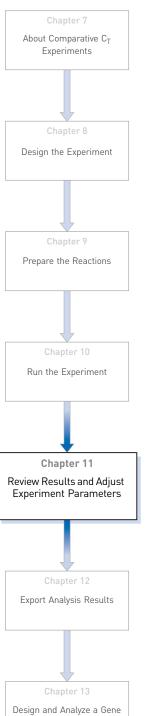


From the ViiA™ 7 Instrument touchscreen


You can also view the progress of the run from the touch screen of the Vii A^{TM} 7 Instrument.

The Run Method screen on the ViiATM 7 Instrument touchscreen looks like this:

Experiment view



Time View

11

Review Results and Adjust Experiment Parameters

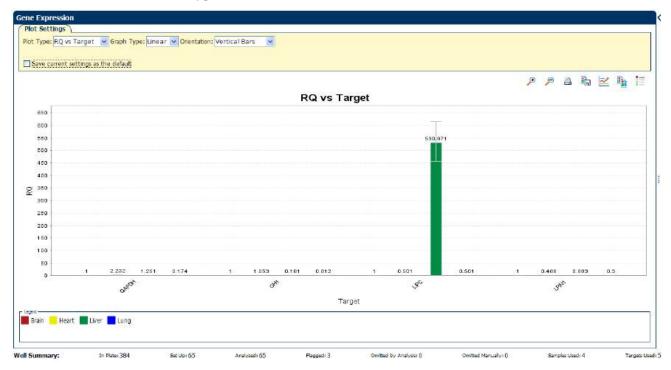
Expression Study

In Section 11.1 of this chapter you review the analyzed data using several of the analysis screens and publish the data. Section 11.2 of this chapter walks you through the process of modifying experiment parameters to troubleshoot problems with experiment results before rerunning an experiment.

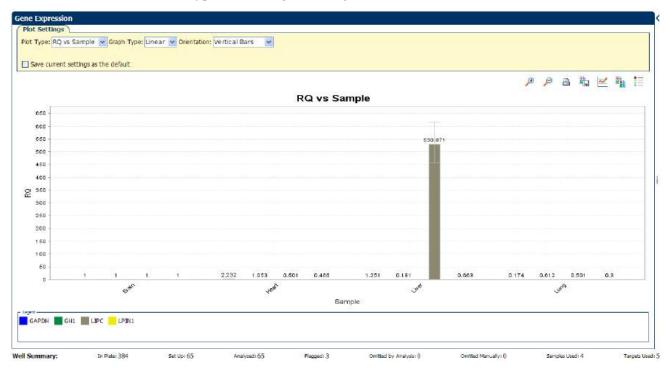
This chapter covers:

Section 11.1 Review Results	103
Analyze the example experiment	103
Assess the gene expression profile using the Gene Expression Plot	103
Identify well problems using the Well Table	105
Assess amplification results using the Amplification Plot	107
Confirm accurate dye signal using the Multicomponent Plot	114
Determine signal accuracy using the Raw Data Plot	116
View the endogenous control profile using the QC Plot	118
Review the flags in the QC Summary	119
For more information	121
Section 11.2 Adjust parameters for re-analysis of your own experiments	12 3
Adjust analysis settings	123
Improve C _T precision by omitting wells	127

Section 11.1 Review Results


Analyze the example experiment

- 1. Open the example experiment file that you ran in Chapter 10.
- 2. Click **Analyze**. The software analyzes the data using the default analysis settings. **Note**: You can also access the experiment to analyze from the Home screen.


Assess the gene expression profile using the Gene Expression Plot

The Gene Expression Plot screen displays the results of relative quantification calculations in the gene expression profile. There are two plots available:

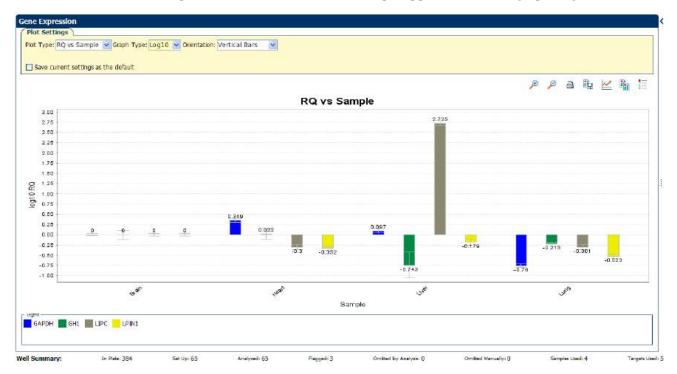
• RQ vs Target – Groups the relative quantification (RQ) values by target. Each sample is plotted for each target. You can view the plot as the linear, log10, Ln, and log2 graph types. The Gene Expression plot when viewed as a linear graph type looks like this:

• **RQ vs Sample** – Groups the relative quantification (RQ) values by sample. Each target is plotted for each sample. You can view the plot as the following graph types: linear, log10, Ln, log2.

Example experiment values

Review each target in the Gene Expression Plot screen for the expression level (or fold change) of the target sample relative to the reference sample.

View the Gene Expression Plot


- From the Experiment Menu pane, select Analysis > Gene Expression.
 Note: If no data are displayed, click Analyze.
- **2.** In the Gene Expression Plot screen, select:

Menu	Selection
Plot Type	RQ vs Sample (default)
Graph Type	Log10
Orientation	Vertical Bars

3. Click Show a legend for the plot (default).

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

In the example experiment, as shown below, the expression level of each target gene in liver, heart, and lung is displayed relative to its respective expression level in the reference sample (brain). Since the reference sample is compared to itself, the relative expression level is 1. When the result is displayed in the Log10 graph type, the expression level of the reference sample appears as 0 in the graph ($\log 10$ of 1 = 0).

Assessing the gene expression plot your own experiments

When you analyze your own Comparative C_T experiment, look for differences in gene expression (as a fold change) relative to the reference sample.

Identify well problems using the Well Table

The Well Table displays data for each well in the reaction plate, including:

- The sample name, target name, task, and dyes
- The calculated threshold cycle (C_T), normalized fluorescence (Rn), and quantity values
- Flags

Example experiment values and flags

Review the Well Table to evaluate the C_T precision of the replicate groups.

View the well table

- From the Experiment Menu pane, select Analysis ➤ Amplification Plot, then click the Well Table tab.
- **2.** From the Group By drop-down menu, select **Replicate**.
- **3.** Look at the C_T SD column to evaluate the C_T precision of the replicate groups. In the example experiment, there are three outliers. You will omit these wells in the troubleshooting section ("Improve C_T precision by omitting wells" on page 127).

Note: To show/hide columns in the Well Table, select/deselect the column name from the Show in Table drop-down menu.

Assessing the well table in your own experiments

When you analyze your own Comparative C_T experiment, look for standard deviation in the replicate groups (C_T SD values). If needed, omit outliers (see "Improve C_T precision by omitting wells" on page 127).

Assess amplification results using the Amplification Plot

Amplification plots available for viewing

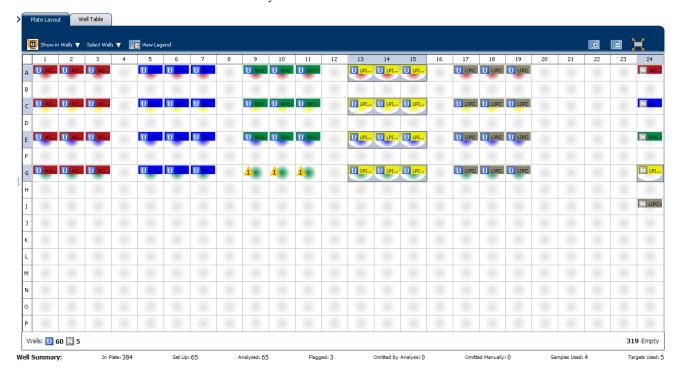
The Amplification Plot screen displays amplification of all samples in the selected wells. There are three plots available:

- ΔRn vs Cycle ΔRn is the magnitude of normalized fluorescence signal generated by the reporter at each cycle during the PCR amplification. This plot displays ΔRn as a function of cycle number. You can use this plot to identify and examine irregular amplification and to view threshold and baseline values for the run.
- **Rn vs Cycle** Rn is the fluorescence signal from the reporter dye normalized to the fluorescence signal from the passive reference. This plot displays Rn as a function of cycle number. You can use this plot to identify and examine irregular amplification.
- C_T vs Well C_T is the PCR cycle number at which the fluorescence meets the threshold in the amplification plot. This plot displays C_T as a function of well position. You can use this plot to locate outlying amplification (outliers).

Each plot can be viewed as a linear or log10 graph type.

Purpose

The purpose of viewing the amplification plot for the example experiment is to identify:


- Correct baseline and threshold values
- Outliers

View the Amplification Plot

- From the Experiment Menu pane, select Analysis ➤ Amplification Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display the LP1N1 wells in the Amplification Plot screen:
 - **a.** Click the **Plate Layout** tab.
 - b. From the Select Wells drop-down menus, select Target, then LP1N1.

The Plate Layout screen should look like this:

3. In the Amplification Plot screen:, enter:

Menu	Selection
Plot Type	ΔRn vs Cycle (default)
Plot Color	Well (default)
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.)	Check (default)

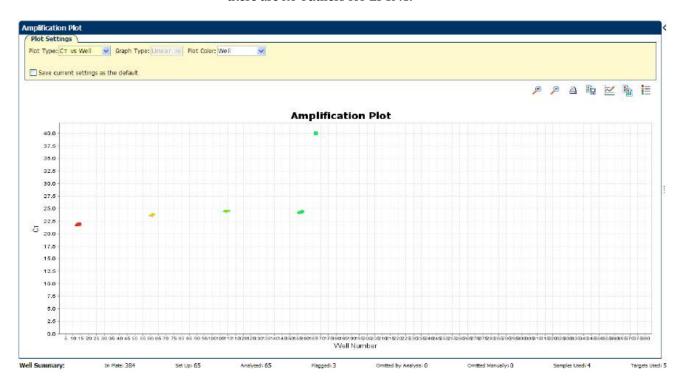
4. View the baseline values:

- **a.** From the Graph Type drop-down menu, select **Linear**.
- **b.** Select the **Baseline** check box to show the start cycle and end cycle.

c. Verify that the baseline is set correctly: The end cycle should be set a few cycles before the cycle number where significant fluorescent signal is detected. In the example experiment, the baseline is set correctly.



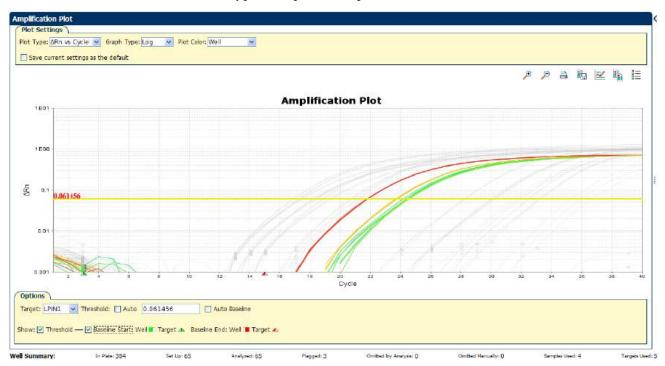
5. View the threshold values:


Menu	Select
Graph Type	Log
Target	LP1N1

a. Select the **Threshold** check box to show the threshold.

b. Verify that the threshold is set correctly. In the example experiment, the threshold is in the exponential phase.

- **6.** Locate any outliers:
 - **a.** From the Plot Type drop-down menu, select C_T vs Well.
 - **b.** Look for outliers from the amplification plot. In the example experiment, there are no outliers for LP1N1.


7. Repeat steps 2 through 6 for the GH1, TGFB1, LIPC, GAPDH, 18S, and ACTB wells. In the example experiment, there is one outlier for 18S. You will omit these wells in the troubleshooting section ("Improve C_T precision by omitting wells" on page 127).

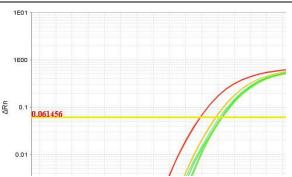
Tips for analyzing your own experiments

When you analyze your own Comparative C_T experiment, look for:

- Outliers
- A typical amplification plot The ViiA[™] 7 Software automatically calculates baseline and threshold values based on the assumption that the data exhibit a *typical* amplification plot. A typical amplification plot has four distinct sections:
 - Plateau phase
 - Linear phase
 - Exponential (geometric phase)
 - Baseline

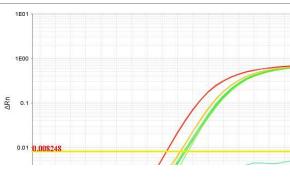
A typical amplification plot should look like this:

IMPORTANT! Experimental error (such as contamination or pipetting errors) can produce atypical amplification curves that can result in incorrect baseline and threshold value calculations by the ViiA™ 7 Software. Therefore, Applied Biosystems recommends that you examine the Amplification Plot screen and review the assigned baseline and threshold values for each well after analysis completes.



Correct threshold values

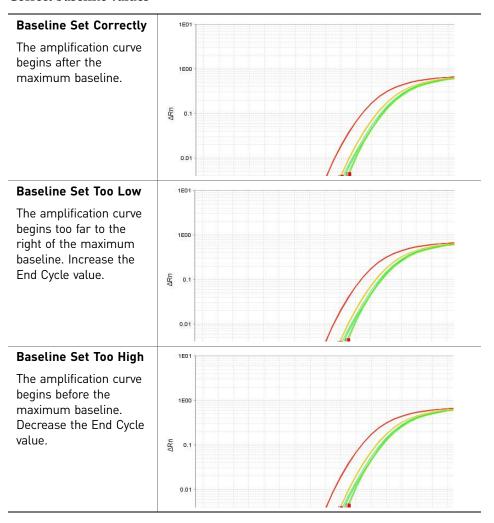
Threshold Set Correctly


The threshold is set in the exponential phase of the amplification curve.

Threshold settings above or below the optimum increase the standard deviation of the replicate groups.

Threshold Set Too Low

The threshold is set below the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar up into the exponential phase of the curve.



Threshold Set Too High

The threshold is set above the exponential phase of the amplification curve. The standard deviation is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar down into the exponential phase of the curve.

• Correct baseline values

View the analyzed data using the relative threshold settings

The ViiATM 7 Software provides the Relative Threshold method to view the analyzed data. The relative threshold algorithm lets you compare the data per well and per target. These options allow analysis of a single gene across samples or, alternatively, a single sample across genes with no dependency on targets, thereby reducing variability.

To view the analyzed data using the relative threshold settings, see "Adjust analysis settings" on page 123.

If your experiment does not meet the guidelines above, troubleshoot as follows:

- Omit wells (see "Improve C_T precision by omitting wells" on page 127).
 Or
- Manually adjust the baseline and/or threshold (see "Adjust analysis settings" on page 123).

Confirm accurate dye signal using the Multicomponent Plot

The Multicomponent Plot screen displays the complete spectral contribution of each dye in a selected well over the duration of the PCR run.

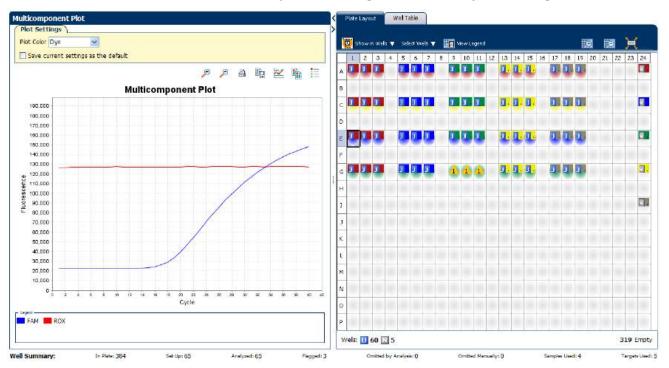
Purpose

In the Comparative C_T example experiment, you review the Multicomponent Plot screen for:

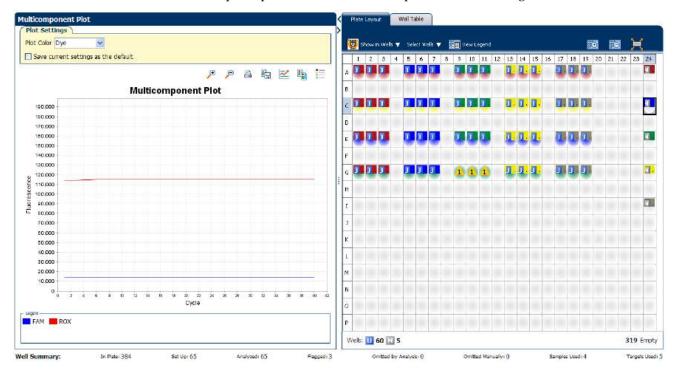
- ROX[™] dye (passive reference)
- FAMTM dye (reporter)
- Spikes, dips, and/or sudden changes
- Amplification in the negative control wells

View the Multicomponent Plot

- From the Experiment Menu pane, select Analysis ▶ Multicomponent Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display the unknown and standard wells one at a time in the Multicomponent Plot screen:
 - a. Click the Plate Layout tab.
 - **b.** Select one well in the plate layout; the well is shown in the Multicomponent Plot screen.


Note: If you select multiple wells, the Multicomponent Plot screen displays the data for all selected wells simultaneously.

- **3**. From the Plot Color drop-down menu, select **Dye**.
- **4.** Click **Show a legend for the plot** (default).


Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

5. Check the FAM dye signals. In the example experiment, the FAM dye signal increases throughout the PCR process, indicating normal amplification.

Confirm accurate dye signal using the Multicomponent Plot

6. Select the negative control wells one at time and check for amplification. In the example experiment, there is no amplification in the negative control wells.

Tips for confirming dye accuracy in your own experiment

When you analyze your own Comparative C_T experiment, look for:

- **Passive reference** The passive reference dye fluorescence level should remain relatively constant throughout the PCR process.
- **Reporter dye** The reporter dye fluorescence level should display a flat region corresponding to the baseline, followed by a rapid rise in fluorescence as the amplification proceeds.
- Irregularities in the signal There should not be any spikes, dips, and/or sudden changes in the fluorescent signal.
- Negative control wells There should not be any amplification in the negative control wells.

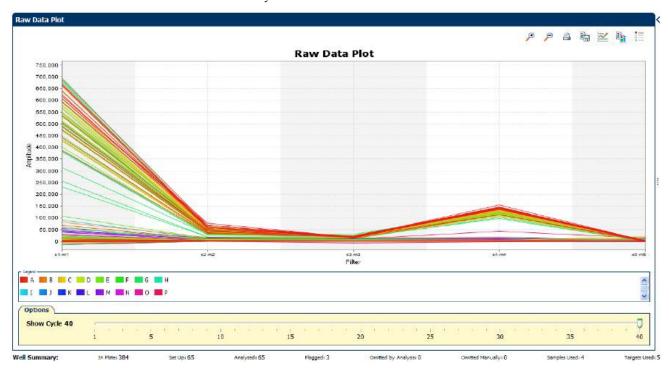
Determine signal accuracy using the Raw Data Plot

The Raw Data Plot screen displays the raw fluorescence signal (not normalized) for each optical filter for the selected wells during each cycle of the real-time PCR.

About the example experiment

In the Comparative C_T example experiment, you review the Raw Data Plot screen for a stable increase in signal (no abrupt changes or dips) from the appropriate filter.

View the Raw Data Plot


- From the Experiment Menu pane, select Analysis ➤ Raw Data Plot.
 Note: If no data are displayed, click Analyze.
- 2. Display all 48 wells in the Raw Data Plot screen by clicking the upper left corner of the plate layout in the Plate Layout tab.
- **3.** Click **Show a legend for the plot** (default).

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

Note: The legend displays the color code for each row of the reaction plate (see the legend in the Raw Data Plot shown below).

Determine signal accuracy using the Raw Data Plot

4. Click and drag the Show Cycle pointer from cycle 1 to cycle 40. In the example experiment, there is a stable increase in signal from filter 1, which corresponds to the FAM^{TM} dye filter.

The filters used for the example experiment are:

Tips for determining signal accuracy in your own experiment

When you analyze your own Comparative C_T experiment, look for the following in each filter:

- · Characteristic signal growth
- No abrupt changes or dips

View the endogenous control profile using the QC Plot

In the Comparative C_T experiment, the QC Plot screen displays the Endogenous Control Profile plot for all the targets in the experiment. The QC Plot serves as a tool to help you choose the best endogenous control for that experiment. The endogenous control profile plot is a visual display of the C_T level of the endogenous control across the sample. You can view up to four endogenous controls at a time. The sample is plotted on the X-axis, and C_T is plotted on the Y-axis. The expression is viewed as a color and shape combination in the plot. Endogenous controls are also known as reference genes.

Example experiment settings

In the example experiment, you can view the endogenous control profile of ACTB, GAPDH, GH1, and LPIN1 the QC Plot screen.

View the QC Plot

1. From the Experiment Menu pane, select **Analysis** ▶ **QC Plot**.

Note: If no data are displayed, click **Analyze**.

- **2.** In the QC Plot screen, click **Target Table**.
 - **a.** In the Candidate Control column, select the check box of the target of the endogenous control profile to plot. In the example experiment, the endogenous controls selected are ACTB, GAPDH, GH1, and LPIN1.
 - **b.** Select a color for each target, from the Color drop-down menu.
 - **c.** Select a shape for each target, from the Shape drop-down menu.
- **3.** Click the **View Replicate Results Table**.
- **4.** Select the check box of the samples to plot. In the example experiment, all the four samples, Brain, Heart, Liver, and Lung are selected.
- 5. Click Show a legend for the plot (default).

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

The QC Plot in the Comparative C_T example experiment looks like this:

Note: This example experiment does not define Biological Groups.

Review the flags in the QC Summary

The QC Summary screen displays a list of the ViiA[™] 7 Software flags, including the flag frequency and location for the open experiment.

Review the QC Summary screen in the Comparative C_T example experiment for any flags triggered by the experiment data. Wells G9, G10, and G11 have data that triggered the HIGHSD flag.

View the QC Summary

- From the Experiment Menu pane, select Analysis ➤ QC Summary.
 Note: If no data are displayed, click Analyze.
- **2.** Review the Flags Summary.

Note: A 0 displayed in the Frequency column indicates that the flag does not appear in the experiment. If the frequency is > 0, the flag appears somewhere in the experiment; the well position is listed in the Wells column.

In the example experiment, there are seven flagged wells.

3. In the Flag Details table, click each flag with a frequency >0 to display detailed information about the flag. In the example experiment. The HIGHSD flag appears three times, in the wells G9, G10, and G11, indicating high standard deviation in the replicate group.

Note: The HIGHSD flag appears because the C_T values exceed the expected range due to low expression of the GH1 gene in the Liver sample.

4. (*Optional*) For those flags with frequency >0, click the troubleshooting link to view information on correcting the flag.

The QC Summary for the example experiment looks like this:

Possible flags

The flags listed below may be triggered by the experiment data.

Flag	Description	
Pre-processing flag		
OFFSCALE	Fluorescence is offscale	
Primary analysis flags		
BADROX	Bad passive reference signal	
NOAMP	No amplification	
NOISE	Noise higher than others in plate	
SPIKE	Noise spikes	
NOSIGNAL	No signal in well	
EXPFAIL	Exponential algorithm failed	

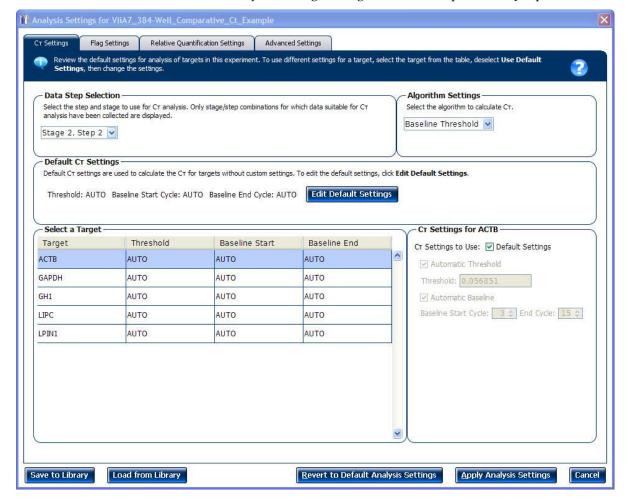
Flag	Description	
BLFAIL	Baseline algorithm failed	
THOLDFAIL	Thresholding algorithm failed	
CTFAIL	C _T algorithm failed	
Secondary analysis flags		
OUTLIERRG	Outlier in replicate group	
AMPNC	Amplification in negative control	
HIGHSD	High standard deviation in replicate group	

Note: When you use the Relative Threshold algorithm, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag).

For more information

For more information on	Refer to	Part number
Publishing data	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™7 System Experiments</i> .	4441434

Section 11.2 Adjust parameters for re-analysis of your own experiments


Adjust analysis settings

The Analysis Settings dialog box displays the analysis settings for the threshold cycle (C_T) , flags, and advanced options.

If the default analysis settings in the Vii A^{TM} 7 Software are not suitable for your own experiment, you can change the settings in the Analysis Settings dialog box, then reanalyze your experiment.

View the analysis settings

- 1. From the Experiment Menu pane, select **Analysis**.
- **2.** Click **Analysis** ▶ **Analysis Settings** to open the Analysis Settings dialog box. In the example experiment, the default analysis settings are used for each tab:
 - C_T Settings
 - Flag Settings
 - Relative Quantification Settings
 - Advanced Settings

The Analysis Settings dialog box for a Comparative C_T experiment looks like this:

3. View and, if necessary, change the analysis settings (see "Adjust analysis settings" below).

Note: You can save the changes to the analysis settings to the Analysis Settings Library for later use. For more information, see About the Analysis Settings Library in Booklet 1, Getting Started with $ViiA^{TM}$ 7 System Experiments.

4. Click **Apply Analysis Settings** to apply the current analysis settings.

Note: You can go back to the default analysis settings, by clicking **Revert to Default Analysis Settings**.

Adjust analysis settings

C_T Settings

Data Step Selection

Use this feature to select one stage/step combination for C_T analysis when there is more than one data collection point in the run method.

Algorithm Settings

You can select the algorithm that determines the C_T values. There are two algorithms: Baseline Threshold (the default) and Relative Threshold.

124

The Baseline Threshold algorithm is an expression estimation algorithm that subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

The Relative Threshold algorithm lets you compare the data on a per-well or pertarget basis. This setting is ideal for analyzing a single gene across samples or a single sample across genes with no dependence on targets, thereby reducing variability. Any settings for baseline or threshold do not affect the analysis when you use the Relative Threshold algorithm.

• Default C_T Settings

Use the default C_T settings feature to calculate C_T for the targets that do not have custom settings. To edit the default settings, click **Edit Default Settings**.

C_T Settings for Target

When you manually set the threshold and baseline, Applied Biosystems recommends:

Setting	Recommendation	
Threshold	Enter a value for the threshold so that the threshold is:	
	Above the background.	
	Below the plateau and linear regions of the amplification curve.	
	Within the exponential phase of the amplification curve.	
Baseline	Select the Start Cycle and End Cycle values so that the baseline ends before significant fluorescent signal is detected.	

Note: This setting is applicable only to the Baseline Threshold algorithm.

Note: Selecting Automatic Threshold implies selection of automatic setting of the baseline. However, if Automatic Threshold is deselected, then you can choose between setting the baseline either automatically or manually.

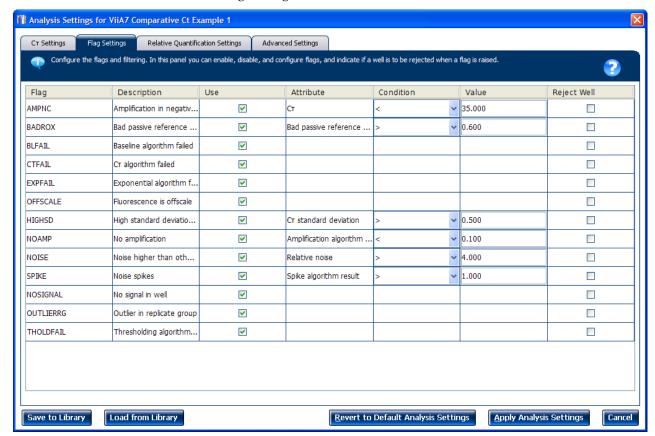
Flag Settings

Use the Flag Settings tab to:

- Adjust the sensitivity so that more wells or fewer wells are flagged.
- Change the flags that are applied by the ViiATM 7 Software.

To adjust the flag settings

- 1. In the Use column, select the check boxes for flags to apply during analysis.
- **2.** (*Optional*) If an attribute, condition, and value are listed for a flag, specify the setting for applying the flag.


Note: If you choose to adjust the setting for applying a flag, make minor adjustments as you evaluate the appropriate setting.

3. In the Reject Well column, select the check boxes if you want the software to reject wells with the flag.

Note: After you have rejected the flagged wells, analysis results depend on factors such as the experiment type and flag type. For example, rejecting wells flagged by HIGHSD in experiments using the Standard Deviation calculations may change the result of C_T SD. For some flags, analysis results calculated before the well is rejected are maintained.

4. Click **Apply Analysis Settings** in the Analysis Settings dialog box. If the run status is complete, the data are reanalyzed.

The Flag Settings tab looks like this:

Relative Quantification Settings Use the Relative Quantification Settings tab to:

- Change the type of analysis, singleplex or multiplex.
- Change the reference sample and/or endogenous control.
- Reject Outliers with ΔC_T values less than or equal to the entered value.

Note: The Outlier Rejection settings apply only to multiplex reactions.

- Select the algorithm to use to determine the relative quantification minimum and maximum values (error bars):
 - Confidence Level Select to calculate the RQ minimum and maximum values based on the selected confidence level. Select the confidence level to use.
 - Standard Deviations Select to calculate the RQ minimum and maximum values based on the selected number of standard deviations. Select the number of standard deviations to use.

Advanced Settings

Use the Advanced Settings tab to change baseline settings well-by-well.

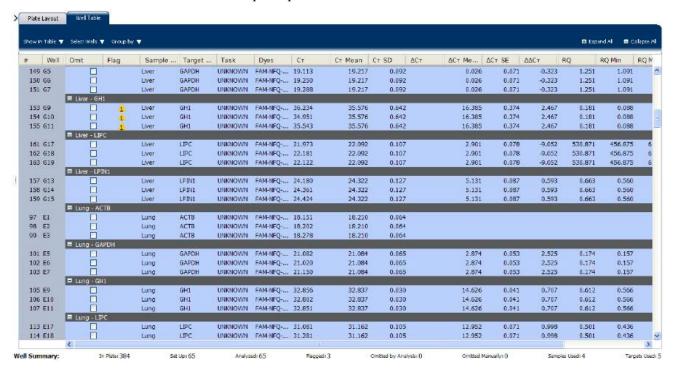
Note: The baseline and threshold values do not affect the analysis using the Relative Threshold setting.

126

To use custom baseline settings for a well-target combination:

- 1. Select one or more well-target combinations in the table.
- **2.** Deselect the **Use** C_T **Settings Defined for Target** check box.
- **3.** Define the custom baseline settings:
 - For automatic baseline calculations, select the **Automatic Baseline** check box.
 - To define the baseline, deselect the **Automatic Baseline** check box, then enter the baseline start cycle and baseline end cycle.

Improve C_T precision by omitting wells

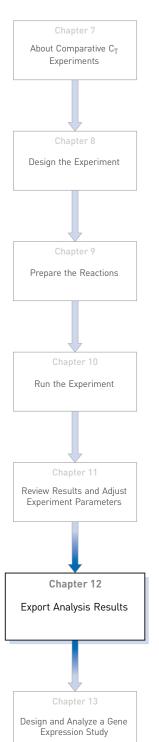

Experimental error may cause some wells to be amplified insufficiently or not at all. These wells typically produce C_T values that differ significantly from the average for the associated replicate wells. If included in the calculations, these outliers can result in erroneous measurements; to ensure C_T precision, omit the outliers from the analysis.

In the Comparative C_T example experiment, there are seven outliers. To remove these wells from analysis.

- From the Experiment Menu pane, select Analysis ➤ Amplification Plot.
 Note: If no data are displayed, click Analyze.
- In the Amplification Plot screen, select C_T vs. Well from the Plot Type drop-down menu.
- 3. Select the Well Table tab.
- 4. In the Well Table, identify outliers:
 - **a.** From the Group By drop-down menu, select **Replicate**.

b. Look for outliers in the replicate group (make sure they are flagged). In the example experiment, wells G9, G10, and G11 have outliers.

c. Select the **Omit** check box next to outlying well(s).



5. Click **Analyze** to reanalyze the experiment data with the outlying well(s) removed from the analysis.

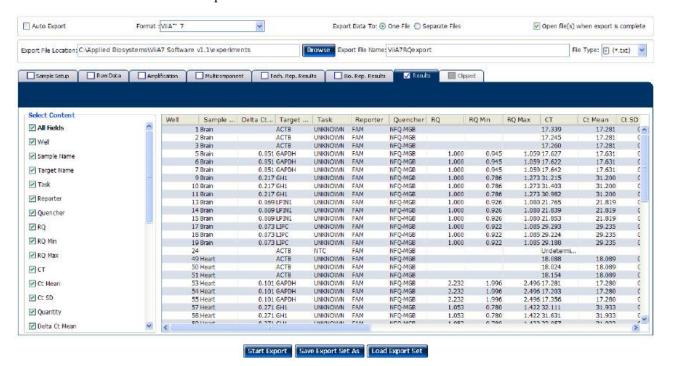
Note: You can also omit undesirable wells in an experiment from the Plate Layout screen. To omit a well from the Plate Layout screen, right-click the well and select **Omit**.

12

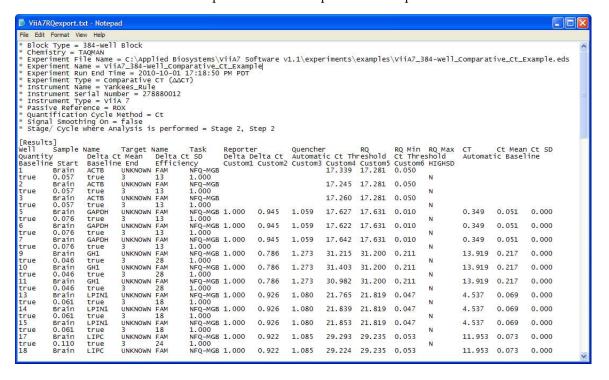
Export Analysis Results

- 1. Open the Comparative C_T example experiment file that you analyzed in Chapter 11.
- 2. In the Experiment Menu, click Export.

Note: To export data automatically after analysis, select the **Auto Export** check box during experiment setup or before running the experiment. Auto export is unchecked for the example experiment.

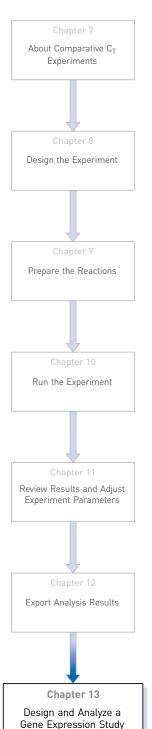

3. Select ViiATM7 Format.

Note: Select 7900 Format if you want to export the Clipped Data.


4. Complete the Export dialog box as shown below:

Field or Selection	Entry
Select Data to export/ Select Content	Results
Export Data To	One File
Export File Name	ViiA7RQexport
File Type	*.txt
Export File Location	<pre><drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments</drive></pre>

Your Export screen should look like this:



Your exported file when opened in Notepad should look like this:

13

Design and Analyze a Gene Expression Study

The ViiATM 7 Software can combine the analysis of experiments that use the Standard Curve, the Relative Standard Curve, or the Comparative C_T ($\Delta\Delta C_T$) quantification methods into a Gene Expression study. A study provides a wider range for analyzing and comparing target behavior across multiple experiments. This chapter explains how to design and analyze multiple Comparative C_T experiments as a study.

Note: You can import different types of quantification experiments into a single Gene Expression study, but make sure the run method is identical for all the experiments in that study.

Note: When you design a Gene Expression study, make sure that each experiment in that Gene Expression study has a unique name. Absence of a unique name, leads to failure of the run.

This chapter covers:

About Gene Expression studies	134
About the example study	134
■ Design a study	135
Analyze the example study	140
■ View the analysis settings	143
Assess amplification results using the Amplification Plot	147
Assess the gene expression profile using the Gene Expression Plot	150
■ Confirm accurate dye signal using the Multicomponent Plot	158
■ View the QC Plots.	160
■ View the QC Summary	168
■ Compare analysis settings	170
Export the study	175
For more information	178

About Gene Expression studies

In a Gene Expression study, you can	You cannot
 Specify the endogenous control(s) and reference sample for the study. Set individual efficiency values for each target. Select the control type when applicable. Set baseline and threshold values and confidence levels, or set the number of standard deviations for Comparative CT Min./Max. 	 Create, add, or modify samples. Create, add, or modify targets. Change assay tasks. You can perform these operations in individual experiments.
 Omit wells individually or together through their association with replicate groups (technical or biological). 	

About the example study

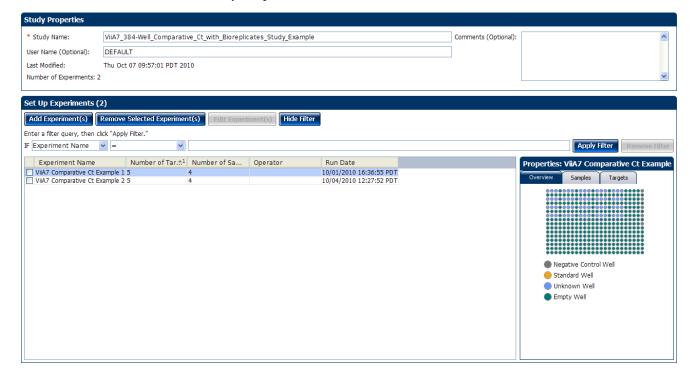
In the Comparative C_T example study:

- Two reaction plates (experiments) are used.
- Experiments that you add to the study are two Comparative C_T experiments that have already been analyzed.
- The cDNA was prepared from total RNA that was isolated from the following 4 samples:
 - Heart
 - Liver
 - Brain
 - Lung
- Five targets (assays) are used:
 - LIPC: Hs00165106_m1
 - GAPDH: Hs99999905_m1
 - ACTB: Hs99999903_m1
 - LP1N1: Hs00299515_m1
 - GH1: Hs00236859_m1
- The reference sample is Brain.
- The endogenous control is ACTB.
- Each experiment in the study was designed for singleplex PCR, where the target and endogenous control assays are run in separate wells.
- For each experiment in the study, reactions were set up for 2-step RT-PCR:
 - The cDNA was reverse-transcribed from total RNA samples using Invitrogen VILO Kit.
 - The reactions were prepared using TaqMan[®] Fast Universal PCR Master Mix (2×).

Design a study

Create a new study

To create a new study in the Vii A^{TM} 7 Software, from the Home screen, click **New Gene Expression Study**.


Set up the study in the Study Properties screen

- 1. In the Study Menu pane, select Setup ▶ Study Properties
- 2. In the Study Properties pane, click the **Study Name** field, then enter **ViiA7_384-Well_Comparative_Ct_with_Bioreplicates_Study_Example**.
- 3. Click the Comments field, then enter Example Comparative C_T Study for the Comparative Ct Experiments.
- **4.** In the Setup Experiments pane, click **Add Experiment(s)**.
- 5. In the Open dialog box, browse to the ViiA7 Comparative Ct Example 1.eds and ViiA7 Comparative Ct Example 2.eds files at:

<drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments\examples

The ViiATM 7 Software displays the details of the experiment in the Properties pane.

Your Study Properties screen should look like this:

Filter the experiments in the study

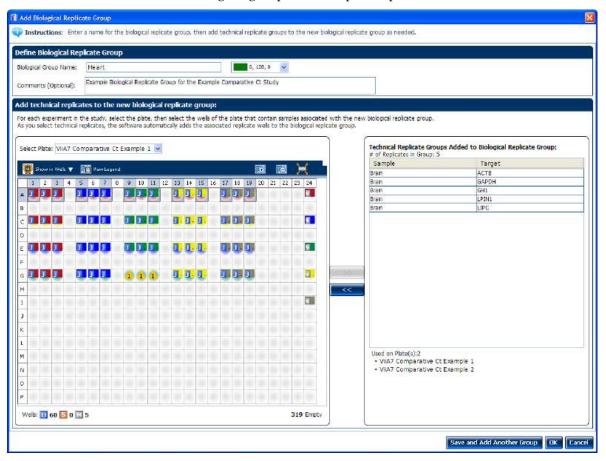
To narrow your search for an experiment, define and apply a filter:

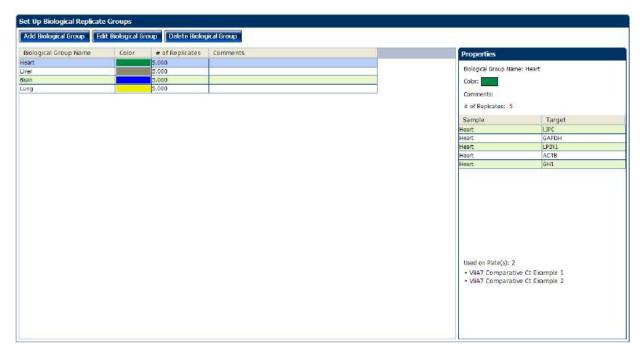
- 1. In the left-most drop-down menu, select an experiment attribute to query.
- 2. In the center drop-down menu, select an operator for the query.
- **3**. In the right-most field, enter the condition to look for, then click **Apply Filter**.

After you apply a filter, click **Hide Filter/Show Filter** to hide or show the filter tool, or click **Remove Filter** to remove the filter.

Define Replicates

In the Define Replicates screen, create biological replicate groups and use them to associate samples for the analysis. Biological replicates allow you to assess the representative nature of your results as they relate to the population being studied. Including biological replicates can give insight into any natural variation that is in the population.


Example study settings


The Gene Expression example study contains four biological replicate groups. These are lung, heart, brain, and liver. Each biological groups consists eight replicates.

To define replicates

- 1. In the Study Menu pane, select **Setup** Define Replicates.
- 2. Click **Add Biological Group** to open the Add Biological Replicate Group dialog box.
- **3.** Define the biological replicate group:
 - a. Click the Biological Group Name field, then enter Heart.
 - **b.** In the Color field, select the color.
 - c. Click the Comments field, then enter Example Biological Replicate Group for the Example Comparative Ct Study.
- **4.** Add technical replicates:
 - **a.** From the Select Plate drop-down menu, select **ViiA7 Comparative Ct Example 1.eds**.
 - b. In the plate layout, select wells A1, A3, A5, A7, A9, A11, A13, A15, A17, and A19, then click to add the technical replicate wells that are associated with the selected well to the biological group.
 - c. Click OK.
 - **d**. Perform steps a through c to add the remaining technical replicate wells associated with the selected well to the biological group.

5. On the Set Up Biological Replicates screen, select the **Heart** biological group that you just added to the study. The ViiATM 7 Software displays the details of the biological group in the Properties pane.

- **6.** Click **Analyze**, then close the study:
 - a. Select File ▶ Close.
 - **b.** At the prompt, click **Yes** to save the changes.
 - **c.** In the Save Study as dialog box, click **Save** to accept the default file name and location. The example study is saved and closed, and you are returned to the Home screen.

Edit a Biological Replicate Group

- 1. Open the study of interest.
- 2. In the Study Menu pane, select **Setup ▶ Define Replicates**.
- **3.** Click **Edit Biological Group** to open the Edit Biological Replicate Group dialog box.
- **4.** Edit the group information:
 - a. From the Biological Group Name drop-down menu, select the group to edit.
 - **b.** To change the group name, click **Edit**, enter a new name, then click **OK**.
 - **c.** To change the color, select a color from the drop-down menu.
 - d. (Optional) Enter comments.
- **5.** From the Select Plate drop-down menu, select the experiment of interest.
- **6.** Add samples to the biological group:
 - **a.** In the Plate Layout, select the well(s) of the plate that contain samples to add to the biological group.
 - **b.** Click to add the samples that are associated with the selected wells to the biological group.
- **7.** Remove samples from the biological group:
 - **a.** In the Technical Replicate Groups Added to Biological Replicate Group pane, select a sample. You can select only one sample at a time.
 - **b.** Click to remove the sample from the biological group.
- **8.** Repeat steps 5 through 7 for the other experiments in the study.
- **9.** Click **OK** to save the changes and return to the study; click **Cancel** to exit the dialog box without saving the changes.

Remove Biological Replicate Groups

- 1. Open the study of interest.
- 2. In the Study Menu pane, select Setup ▶ Define Replicates.

- **3.** In the Define Replicates screen, select the group to remove, then click **Delete Biological Group**.
- **4.** Click **Yes** to remove the group from the study; click **No** to keep the group in the study.

Tips for designing your own study

- Enter a study name that is descriptive and easy to remember. You can enter up to 100 characters in the Study Name field. The study name is used as the default file name.
 - You can only use the alpha-numeric, period (.), hyphen (-), underscore (_) and spaces () characters in the Experiment Name field.
- (Optional) Enter comments to describe the study. You can enter up to 1000 characters in the Comments field.
- Use the default user name, or enter a new user name, to identify the owner of the study. You can enter up to 100 characters in the User Name field.
 - **Note**: If security is enabled, the User Name field is automatically populated with the name you selected at log in.
- You can add an unlimited number of experiments (reaction plates) to the study. Click **Add Experiment (s)** or **Remove Selected Experiment(s)** to add or remove experiments to or from a study. Note the following:
 - Each experiment in the study must:
 - Have one or more common endogenous control(s). The endogenous control(s) must be present on each reaction plate within the study.
 - Have identical thermal cycling parameters (the same number of steps and cycles). The ViiA[™] 7 Software cannot combine in the same study experiments that use Fast and Standard thermal cycling conditions.
 - Have the same passive reference.
 - As the default, the ViiATM 7 Software assigns the endogenous control and reference sample for a study based on the analysis settings of the first experiment that you added to the study.
 - If experiments that contain biological replicate groups are added to a study, the ViiA™ 7 Software automatically merges the matching biological groups.
 - The ViiA[™] 7 Software automatically analyzes a study after you add more than one experiment to it. Consequently, to ensure that the software uses the correct settings, Applied Biosystems recommends that you review the analysis settings of your study after adding multiple experiments.
- When adding experiments to the study, **Ctrl-click** multiple experiments in the Open dialog box to add them to the study.
- Select an experiment that has been added to the study to view its properties in the Properties pane.
- Filter the experiments added to the study to simplify the list for easier review. See "Filter the experiments in the study" on page 136.
- Enter a biological replicate group name that is descriptive and easy to remember. You can enter up to 100 characters in the Biological Group Name field. You can only use the alpha-numeric, full-stop (.), hyphen (-), underscore (_) and space () characters in the Experiment Name field.

- (Optional) Enter comments to describe the biological replicate group. You can enter up to 1000 characters in the Comments field.
- You can add an unlimited number of technical replicates to a biological group.

IMPORTANT! A sample cannot belong to more than one biological group.

- Click-drag over the desired wells, or Ctrl-click or Shift-click in the plate layout to select multiple wells.
- Click the upper-left corner of the plate layout to select all wells.
- You can change the name of a biological replicate group, change its color identification and description, and add or remove technical replicates. See "Edit a Biological Replicate Group" on page 138.
- You can remove an existing biological replicate group. See "Remove Biological Replicate Groups" on page 138.

IMPORTANT! After you remove a biological replicate group from a study, you cannot restore it.

Analyze the example study

This section explains how to use the ViiATM 7 Software to analyze the Gene Expression example study. It also describes Applied Biosystems recommended best practices as you perform the analysis.

Note: The Comparative C_T Study Example.edm file demonstrates the use of biological replicate groups. An additional example study that does not use biological replicate groups is provided with the ViiATM 7 Software.

Access the example study

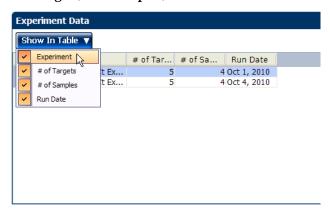
For the Gene Expression example study, open the data file that is installed with the ViiATM 7 Software. The data file was created with the same design parameters that are provided in "About Gene Expression studies" on page 134.

You can find the data file for the example study on your computer at:

<drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments\examples\
ViiA7_384-Well_Comparative_Ct_with_Bioreplicates_Study_Example.edm

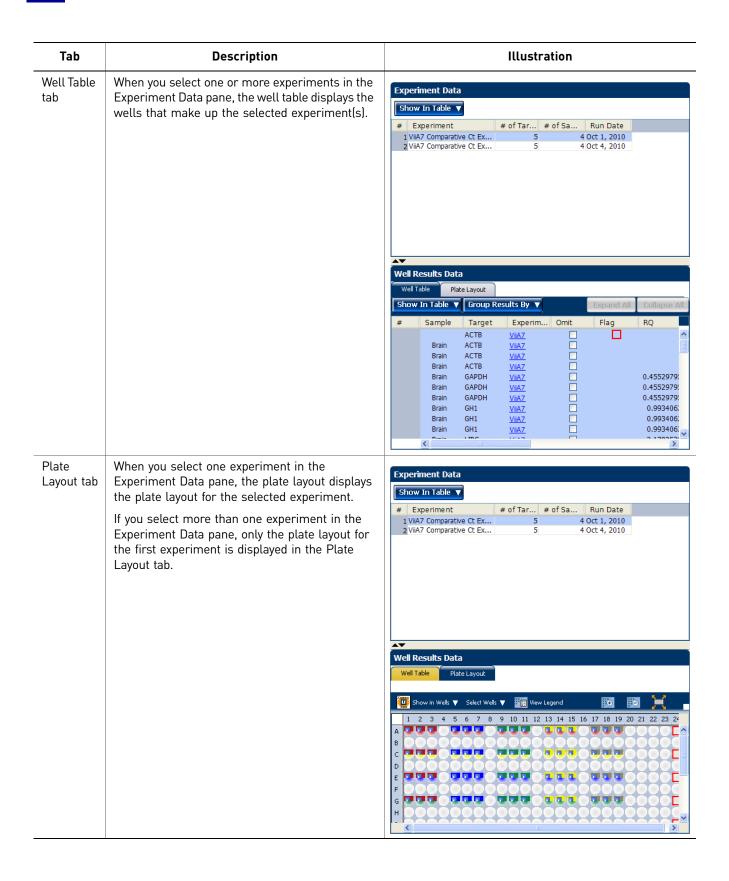
where:

<*drive*> is the computer hard drive on which the ViiATM 7 Software is installed. The default installation drive for the software is the D drive.


View the experiment data and well results

The Experiment Data and Well Results Data panes appear in the Amplification Plot, Multicomponent Plot, and Multiple Plots View screens.

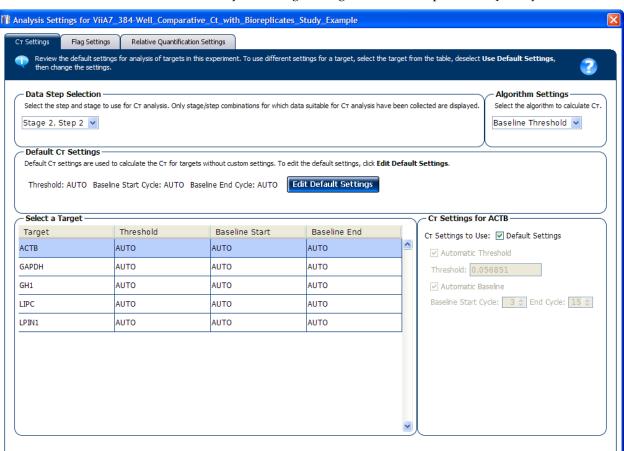
The Gene Expression screen displays the Replicate Results Data and the Well Results Data panes.


Only the Well Results Data pane appears in the QC Plots View screen.

 To display or hide columns in the Experiment Data pane– from the Show In Table drop-down menu, select or deselect one or more options: Experiments, # of Targets, # of Samples, Run Date.

To display a subset of the study data in the plots– Select one or more rows in the
Experiment Data pane or the Well Results Data pane, then select the Hide
unselected data from plot check box appearing in the plot pane to display data
only from the selected rows.

The Experiments Data pane lists each reaction plate (experiment) that is added to a study. The data that are displayed in the Well Results Data pane depend on which tab you select in the Experiment Data pane:


View the analysis settings

The Analysis Settings dialog box displays the analysis settings for the threshold cycle (C_T) , flags, and relative quantification. If the default analysis settings in the ViiATM 7 Software are not suitable for your study, you can change the settings in the Analysis Settings dialog box, then reanalyze your study.

Note: In the Comparative C_T example study, the default analysis settings are used without changes.

To adjust the analysis settings

- 1. From the Study Menu pane, select **Analysis**.
- 2. Click **Analysis Settings** to open the Analysis Settings dialog box.
- 3. Select the **Relative Quantification Settings** tab, then view the default reference sample and endogenous control. In the example study, the default reference sample is brain and the default endogenous control is 18S.
- **4.** Select the **C**_T **Settings** tab, then the **Flag Settings** tab. In the example study, the default analysis settings are used in each tab.
 - **Note:** When you use the Relative Threshold option, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag
- **5.** View and, if necessary, change the analysis settings. For more information on the changes to analysis settings, refer to "Tips for analyzing your own study" on page 144.
 - **Note:** You can save the changes to the analysis settings to the Analysis Settings Library for later use. For more information, see About the Analysis Settings Library in Booklet 1, *Getting Started with ViiA*TM 7 System Experiments.
- $\textbf{6.} \ \ \textbf{Click } \textbf{Apply Analysis Settings} \ \text{to apply the current analysis settings}.$
 - **Note:** You can go back to the default analysis settings by clicking **Revert to Default Analysis Settings**.
- 7. Click Analyze.

The Analysis Settings dialog box for a Comparative C_T Study looks like this:

Tips for analyzing your own study

Unless you have already determined the optimal settings for your study, use the default analysis settings in the Vii A^{TM} 7 Software. If the default settings are not suitable for your study, change the settings as described below.

Load from Library Revert to Default Analysis Settings Analyze Cancel

C_T Settings

Data Step Selection

Use this feature to select multiple locations of analysis, in case several are chosen.

Algorithm Settings

You can select the algorithm that determines the C_T values. There are two algorithms: Baseline Threshold (the default) and Relative Threshold.

The Baseline Threshold algorithm is an expression estimation algorithm that subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

The Relative Threshold algorithm lets you compare the data on a per-well or pertarget basis. This setting is ideal for analyzing a single gene across samples or a single sample across genes with no dependence on targets, thereby reducing variability. Any settings for baseline or threshold do not affect the analysis when you use the Relative Threshold algorithm.

• Default C_T Settings

Use the default C_T settings feature to calculate C_T for the targets that do not have custom settings. To edit the default settings, click **Edit Default Settings**.

• C_T Settings for Target

When you manually set the threshold and baseline, Applied Biosystems recommends:

Setting	Recommendation	
Threshold	Enter a value for the threshold so that the threshold is:	
	Above the background.	
	Below the plateau and linear regions of the amplification curve.	
	Within the exponential phase of the amplification curve.	
Baseline	Select the Start Cycle and End Cycle values so that the baseline ends before significant fluorescent signal is detected.	

Note: This setting is applicable only to the Baseline-Threshold algorithm.

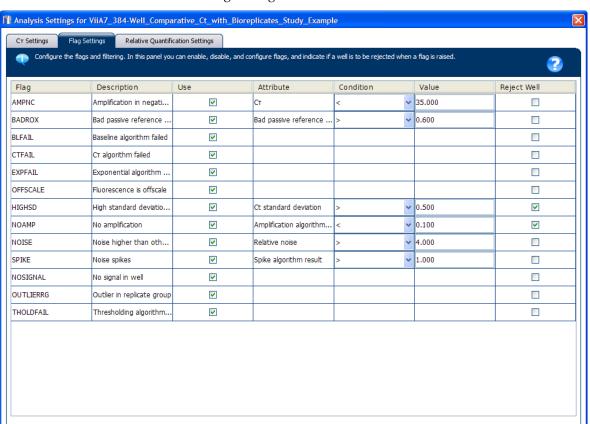
Note: Selecting Automatic Threshold implies selection of automatic setting of the baseline. However, if Automatic Threshold is deselected, then you can choose between setting the baseline either automatically or manually.

Flag Settings

Use the Flag settings tab to:

- Adjust the sensitivity so that more wells or fewer wells are flagged.
- Change the flags that are applied by the ViiATM 7 Software.

To adjust the flag settings


- 1. In the Use column, select the check boxes for flags to apply during analysis.
- **2.** (*Optional*) If an attribute, condition, and value are listed for a flag, specify the setting for applying the flag.

Note: If you choose to adjust the setting for applying a flag, make minor adjustments as you evaluate the appropriate setting.

3. In the Reject Well column, select the check boxes if you want the software to reject wells with the flag.

Note: After you have rejected the flagged wells, analysis results depend on factors such as the experiment type and flag type. For example, rejecting wells flagged by HIGHSD in experiments using the Standard Deviation calculations may change the result of C_T SD. For some flags, analysis results calculated before the well is rejected are maintained.

4. Click **Apply Analysis Settings** in the Analysis Settings dialog box. If the run status is complete, the data are reanalyzed.

The Flag Settings tab looks like this:

Relative Quantification Settings

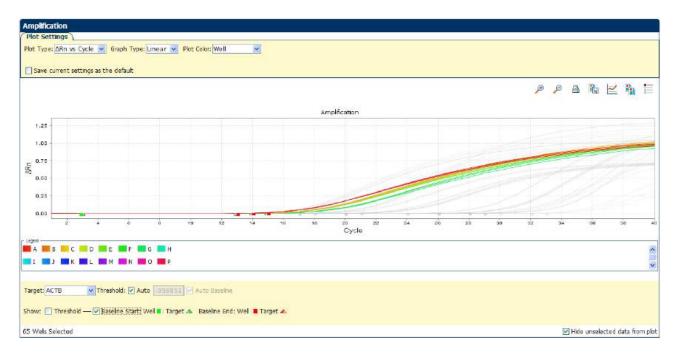
Use the Relative Quantification Settings tab to:

Save to Library | Load from Library | Revert to Default Analysis Settings | Analyze | Cancel

- Change the reference sample and/or endogenous control. As the default, the ViiATM 7 Software assigns the endogenous control and reference sample for a study based on the analysis settings of the first experiment added to it. You can add multiple endogenous controls to a study.
- Correct the amplification efficiency. You can enter a percentage value between 1% and 150% for each target. When you set an assay to have a value that differs from 100% efficiency, the software uses the relative standard curve algorithm.
- (For multiplex reactions) Specify the ΔC_T value at which to reject replicates (outlier rejection).
- Select the algorithm to use to determine the relative quantification minimum and maximum values (error bars):
 - Confidence Level Select to calculate the RQ minimum and maximum values based on the selected confidence level. Select the confidence level to use.
 - Standard Deviations Select to calculate the RQ minimum and maximum values based on the selected number of standard deviations. Select the number of standard deviations to use.

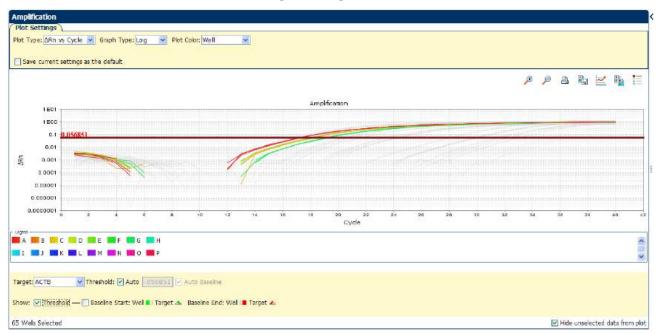
Assess amplification results using the Amplification Plot

In the comparative C_T example study, you review each target in the Amplification Plot screen for correct baseline and threshold values.


- From the Study Menu pane, select Analysis ➤ Amplification Plot.
 Note: If no data are displayed, click Analyze.
- 2. In the Experiment Data pane, select all of the experiments (click and drag to select all rows in the table).
- 3. In the Amplification Plot pane, set the parameters for the plot:
 - **a.** From the Plot Type drop-down menu, select Δ **Rn vs Cycle**.
 - **b.** From the Plot Color drop-down menu, select Well.
 - c. Click For Show a legend for the plot.

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

- **d.** From the Target drop-down menu, select **ACTB** to highlight all ACTB wells in the study.
- **4.** View the baseline values:
 - a. From the Graph Type drop-down menu, select Linear.
 - **b.** Select the **Show Baseline** check box to show the start cycle and end cycle.


c. Verify that the baseline is set correctly: The end cycle should be set a few cycles before the cycle number where significant fluorescence is detected. In the example study, the baseline is set correctly.

Note: The data shown in the screenshot below is of the example experiment. Results vary depending on the experiment setup.

- **5.** View the threshold values:
 - a. From the Graph Type drop-down menu, select Log.
 - **b.** Deselect the **Show Baseline** check box, then select the **Show Threshold** check box to show the threshold.

c. Verify that the threshold is set correctly. In the example study, the threshold is in the exponential phase.

6. Repeat steps 3 through 5 for the remaining targets.

Tips for assessing amplification in your own study

Ensure that your study meets the following requirements:

- **A typical amplification plot** See the amplification plot examples in the Chapter 5 and Chapter 11.
- **Correct baseline and threshold values** See the threshold examples and the baseline examples in Chapter 5 and Chapter 11.

If your study does not meet these requirements, you can:

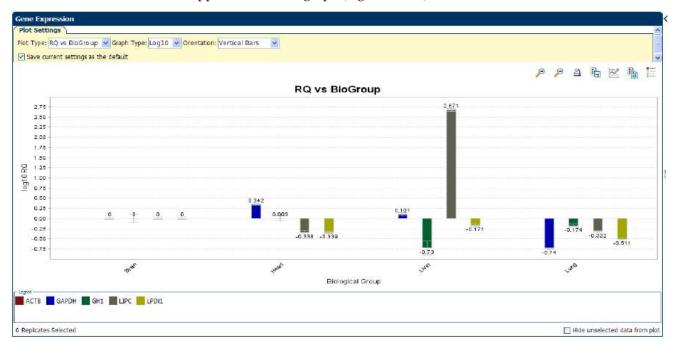
- Manually adjust the baseline and/or threshold. See "View the analysis settings" on page 143.
- Omit individual wells from the analysis. See "Omit wells from the analysis" on page 175.

Assess the gene expression profile using the Gene Expression Plot

The Gene Expression Plot screen displays the results of the relative quantification calculations in the gene expression profile. Three plots are available:

- **RQ vs Target** Groups the relative quantification (RQ) values by target. Each sample is plotted for each target. You can view the plot as the following graph types: linear, log10, Ln, log2.
- **RQ vs Sample** (displayed only when the Technical Replicates tab is selected in the Replicate Results Data pane) Groups the relative quantification (RQ) values by sample. Each target is plotted for each sample. You can view the plot as the following graph types: linear, log10, Ln, log2.
- **RQ vs BioGroup** (displayed only when the Biological Replicates tab is selected in the Replicate Results Data pane) Groups the relative quantification (RQ) values by biological replicate group. Each target is plotted for each sample. You can view the plot as the following graph types: linear, log10, Ln, log2.

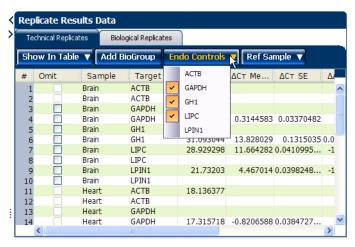
About the example study

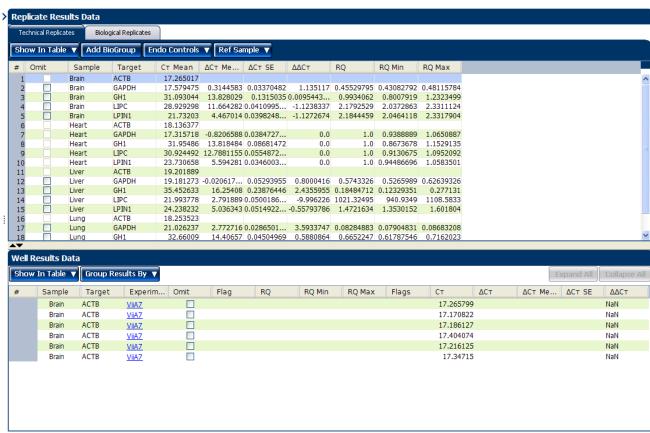

In the Comparative C_T example study, you review each target in the Gene Expression Plot screen for the expression level (or fold change) of the target sample relative to the reference biological replicate group.

View the Gene Expression Plot

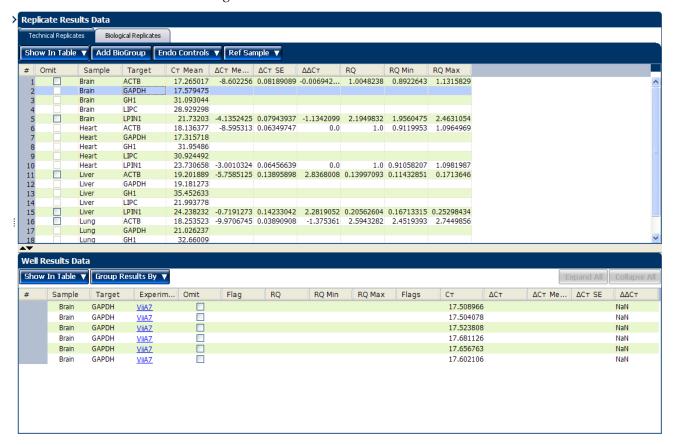
- 1. From the Study Menu pane, select **Analysis** ▶ **Gene Expression**.
- **2.** In the Gene Expression Plot pane, set the parameters for the plot:
 - **a.** In the Plot Type drop-down menu, select **RQ vs BioGroup**.
 - **b.** In the Graph Type drop-down menu, select **Log10**.
 - **c.** In the Orientation drop-down menu, select **Vertical Bars**.
 - d. Click **Show a legend for the plot**.

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.


In the example study, the expression levels of multiple targets in the biological replicate group are displayed relative to the expression levels of the same targets in the reference biological replicate group (universal). Because the reference sample is compared to itself, the relative expression level is 1. When the result is displayed in the Log10 graph type, the expression level of the reference sample appears as 0 in the graph (log10 of 1 = 0).



- **3.** Select multiple endogenous controls:
 - **a.** In the Replicate Results Data pane, select the **Technical Replicates** tab.


b. From the Endo Controls drop-down menu, select **GAPDH**, **GH1**, and **LIPC**, then deselect **ACTB**.

Note: You can also select the endogenous controls in the Analysis Settings dialog box. See "View the analysis settings" on page 143.

4. Click **Analyze**. In the example study shown below, all samples for the endogenous controls **GAPDH**, **ACTB**, and **LIPC** have no values (with the exception of the C_T Mean value), and the RQ values for the remaining samples change. For example, in the example study, the RQ value for the brain sample changes from 1.0 (with 18S as the endogenous control) to none with the new endogenous controls.

Tips for assessing the gene profile in your own study

Look for:

- Differences in gene expression (as a fold change) relative to the reference sample.
- Standard deviation in the replicate groups (C_T SD values).

If needed, you can omit outliers. See "Omit replicates from the analysis" on page 158.

Note: To display a subset of the study data in the Gene Expression Plot pane, select one or more rows in the Technical Replicates tab or the Biological Replicates tab, then select **Hide unselected data from plot** to display data only from the selected rows.

View the replicate results data and the well results data

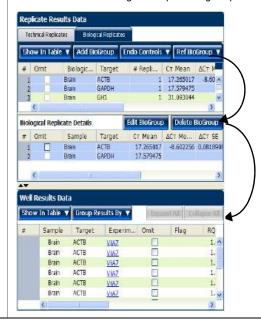
The Replicate Results Data pane lists each reaction plate (experiment) that is added to a study. The results of the study are arranged by technical or biological replicate association.

The data that are displayed in the Well Results Data pane depend on which tab you select in the Replicate Results Data pane:

Technical Replicates Tab

This tab arranges the results of the relative quantification analysis by technical replicate group. The Vii A^{TM} 7 Software displays the results for each sample/target combination as a row in the table.

You can view the members of a technical replicate group by selecting the appropriate row in the table. When a row is selected, the Well Results Data pane displays the wells that make up the selected technical replicate group.



Biological Replicates Tab

This tab arranges the results of the relative quantification analysis by biological replicate group. The $ViiA^{TM}$ 7 Software displays the results for each biological group as a row in the table (each row displays a biological sample with its target).

You can view the members of a biological replicate group by selecting the appropriate row from the table. When a row is selected:

- The Biological Replicate Details table displays the technical replicate groups that make up the selected biological replicate group.
- The Well Results Data pane displays the individual members of the technical replicate groups that make up the selected biological replicate group.

Column descriptions

The table below provides definitions for the column headings that appear in the tables in the Technical Replicates and Biological Replicates tabs.

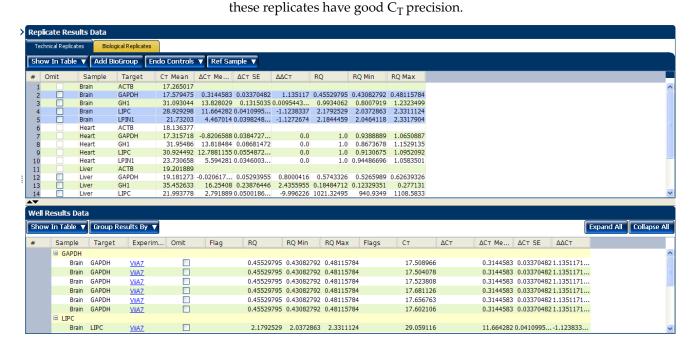
Note: To show or hide columns in a table, select or deselect the column name from the Show In Table drop-down menu.

Column	Description
Δ_{CT}	The calculated $\Delta_{\mbox{\footnotesize{CT}}}$ value for the replicate group associated with the test sample.
	Note: The ΔC_T value is calculated only for multiplex experiments and is calculated at the well level (that is, the individual technical replicate level) by subtracting the target C_T value from the endogenous control C_T value.
ΔC_T Mean	The arithmetic average of the technical replicate C_{T} values for the sample replicate group.
	Note: The ΔC_T Mean value is calculated at the reaction plate level and represents the mean difference between the target $_{CT}$ values and the endogenous control C_T values for all the technical replicates for that sample that are present on the plate.
ΔC_T SE	The Standard Error of the mean associated with the reported Mean ΔC_{T} value.
	Note: The Δ_{CT} SE value is calculated differently for multiplex and singleplex experiments. For multiplex experiments, the calculation is at the well level. For singleplex experiments, the calculation combines the plate-level $_{\text{CT}}$ value variation between the target and the endogenous control.
	Note: If you select the Standard Deviation option in the RQ Min/Max calculations on the Relative Quantification Settings in the Analysis Settings dialog box, Δ_{CT} SD, that is the Standard Deviation values are calculated by the ViiA TM 7 Software.
$\Delta\Delta C_{T}$	The calculated $\Delta\Delta_{CT}$ value for the replicate group associated with the reference sample.
# Replicates	The number of biological replicate groups in the study.
Biological Group	The name of the biological replicate group.
C _T	Threshold cycle; the PCR cycle number at which the fluorescence meets the threshold in the amplification plot.
C _T Mean	The arithmetic average of the technical replicate _{CT} values.
Experiment	The name of the experiment file (for example, heart.eds).
Flag	The number of QC flags that the well generated as listed in the $ riangle$ symbol.
Omit (Replicate Results Data pane)	Indicates the omission status of the members of the associated technical or biological replicate group(s):
	 A check mark (✓) indicates that all replicates have been removed from the analysis.
	 A hyphen (-) indicates that one or more replicates have been removed from the analysis.
Omit (Well Results Data pane)	Indicates the omission status of the well. A check mark (🗸) indicates that the well has been removed from the analysis.
RQ	The calculated relative level of gene expression for the replicate group that is associated with the test sample.

Column	Description	
RQ Max	The maximum relative level of gene expression in the test samples calculated using the confidence level set in the Analysis Settings dialog box.	
	Note: The maximum includes the variability associated with the endogenous control and targets in only the test samples.	
RQ Min	The minimum relative level of gene expression in the test samples calculated using the confidence level set in the Analysis Settings dialog box.	
	Note: The minimum includes the variability associated with the endogenous control and targets in only the test samples.	
Sample	The sample associated with the data displayed in the row.	
Target	The target assay associated with the data displayed in the row.	
Well	The location of the well in the reaction plate.	

About the example study

In the Comparative C_T example study, you review the Replicate Results Data pane and the Well Results Data pane to evaluate the C_T precision of the replicate groups and view related RQ information.


View the results data

- 1. From the Study Menu pane, select **Analysis** ▶ **Gene Expression**.
- 2. Click $\[\]$ at the top left of the Replicate Results Data pane.
- **3.** View the technical replicates:
 - **a.** Click the **Technical Replicates** tab. The table displays the results by technical replicate group.
 - **b.** In the Technical Replicates table, select the following groups:
 - Brain/GAPDH (row2)
 - Brain/LIPC (row 4)
 - Brain/LPIN1 (row 5)

The Well Results Data pane displays all wells that make up the selected groups.

- **4.** View the values in the Well Results Data pane:
 - **a.** From the Group Results By drop-down menu, select **Target**.

b. View the C_T , ΔC_T Mean, and ΔC_T SE values to evaluate the C_T precision of the replicate groups. In the example study, the low ΔC_T SE values indicate

Tips for viewing replicate results in your own study

- Select the Technical Replicates tab or the Biological Replicates tab to organize
 and view the sample data according to the associated technical replicate group or
 biological replicate group.
- View all wells for a technical or biological replicate group by selecting the appropriate row in the table. When a row is selected, the Well Results Data pane displays the wells that make up the group. **Ctrl-click** to select multiple rows.
- Change the endogenous control by clicking Endo Control, then selecting a new target.
- Change the reference sample by clicking Ref Sample, then selecting a new sample.
- Add biological replicate groups by clicking **Add BioGroup**.
- Omit biological or technical replicates from the analysis. See "Omit replicates from the analysis" on page 158.

Note: The Comparative C_T Study Example.edm file demonstrates the use of biological replicate groups. An additional example study that does not use biological replicate groups is provided with the ViiATM 7 Software. You can find this study file on your computer at:

<drive>:\Applied Biosystems\ViiA7 Software

v1.1\experiments\examples\ViiA7 Gene Expression Study Example.edm.

Omit replicates from the analysis

To omit a technical or biological replicate from the analysis:

- 1. From the Study Menu pane, select **Analysis** ▶ **Gene Expression**.
- **2.** Select the **Technical Replicates** or **Biological Replicates** tab according to the type of replicate that you want to omit.
- **3.** In the replicate table, scroll to the biological or technical replicate of interest, then select the corresponding check box in the Omit column.
- 4. Click **Analyze** when you finish omitting wells.

IMPORTANT! You cannot omit *all* technical replicates that belong to a reference sample or a reference biological group, or that serve as the endogenous control for a study.

Note: You can also omit the biological replicates in the Biological Replicate Details table at the bottom of the Biological Replicates tab.

Confirm accurate dye signal using the Multicomponent Plot

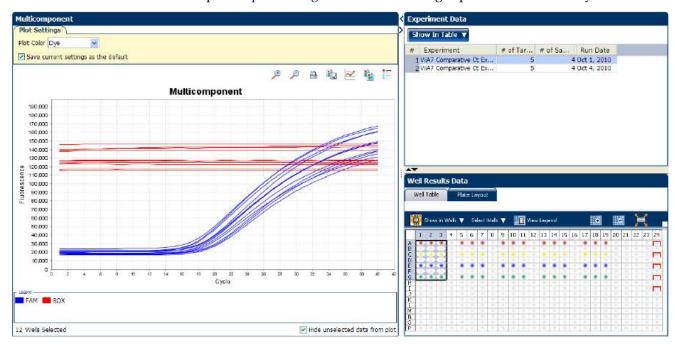
The Multicomponent Plot screen displays the complete spectral contribution of each dye over the duration of the PCR run in a selected well of any experiment that is added to the study.

About the example study

In the comparative C_T example study, you review the Multicomponent Plot screen for:

- ROXTM dye (passive reference)
- FAMTM dye (reporter)
- Spikes, dips, and/or sudden changes
- Amplification in the negative control wells

View the Multicomponent Plot


- 1. From the Study Menu pane, select **Analysis** Multicomponent Plot.
- 2. In the Experiment Data pane, select the **ViiA7 Comparative Ct Example 1.eds** experiment.
- **3.** Display the unknown wells one at a time in the Multicomponent Plot pane:
 - a. Click the **Plate Layout** tab.
 - **b.** Select one well in the plate layout; the well is shown in the Multicomponent Plot pane.

Note: If you select multiple wells, the Multicomponent Plot pane displays the data for all selected wells simultaneously.

- **4.** In the Multicomponent Plot pane, set the parameters for the plot:
 - a. From the Plot Color drop-down menu, select Dye.
 - b. Click **Show a legend for the plot**.

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

- **5.** Check the FAM dye signal. In the example study, the FAM dye signal increases throughout the PCR process, which indicates normal amplification.
- **6.** Check the ROX dye signal. In the example study, the ROX dye signal remains constant throughout the PCR process, which indicates typical data.
- 7. Repeat steps 2 through 6 for the remaining experiments in the study.

Tips for confirming dye-signal accuracy in your own studies

- **Passive reference** The passive reference dye fluorescence level should remain relatively constant throughout the PCR process.
- **Reporter dy**e The reporter dye fluorescence level should display a flat region corresponding to the baseline, followed by a rapid rise in fluorescence as the amplification proceeds.
- **Irregularities in the fluorescence** There should not be any spikes, dips, and/or sudden changes in the fluorescence.
- Negative control wells There should not be any amplification in the negative control wells.

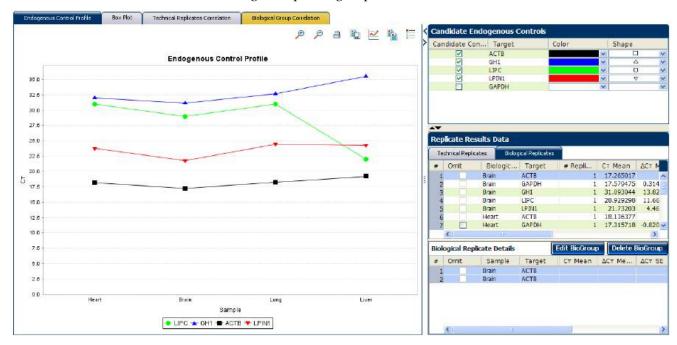
If your study does not meet the guidelines above, you can omit individual wells from the analysis. See "Omit wells from the analysis" on page 175.

View the QC Plots

The QC Plots screen displays the endogenous control and replicate analysis results for each reaction plate (experiment) added to the study. The following plots are derived from the experiments added to a study:

- Endogenous Control Profile
- Box Plot
- Technical Replicates Correlation
- Biological Replicates Correlation

View the Endogenous Control Profile plot


The QC Plots screen displays the Endogenous Control Profile plot for the endogenous controls used in the experiments added to a gene expression study. The endogenous control profile plot displays how much of the endogenous control is expressed in a sample. The sample is plotted on the X-axis, and the C_T is plotted on the Y-axis. The expression is viewed as a color and shape combination in the plot.

In the example study, you view four potential endogenous controls expressed in four samples. The potential endogenous controls are:

- ACTB
- GH1
- LIPC
- LPIN1

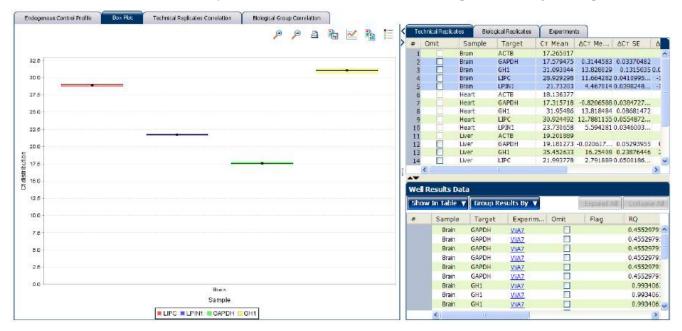
The samples are brain, heart, lung, and liver.

- 1. From the Study Menu pane, select **Analysis** ▶ **QC Plots**.
- 2. In the QC Plots pane, click **Endogenous Control Profile**.
- 3. In the Candidate Endogenous Controls pane, select the check boxes of those Targets whose profile you want to view in the plot pane. In the example study, the Target ACTB is chosen to be the endogenous control because it is expressed at similar levels in three out of four of the given samples.
- **4.** In the Replicate Results Data pane, view results by replicate group.
 - **a.** Click the **Technical Replicates** tab. The table displays the results by technical replicate group.

b. Click the **Biological Replicates** tab. The table displays the results by biological replicate group.

View the box plots

The Box Plot displays the C_T distribution of a particular **Target** in samples. You can see the individual C_T values/ raw data with this plot.


In the example study, you view the box plots of five targets in four different samples:

- LPIN1
- GAPDH
- LIPC
- GH1
- ACTB

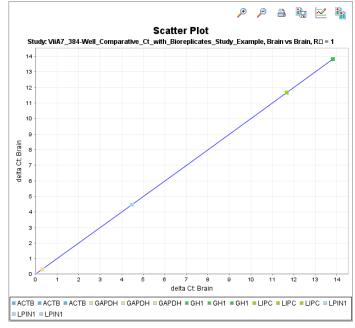
The samples are Heart, Liver, Lung, and Brain.

- 1. In the QC Plots pane, click **Box Plots** to access the Replicate Results Data pane.
- **2.** In the Replicate Results Data pane, click the **Technical Replicates** tab. The table displays the results by technical replicate group.
- **3.** Click the **Biological Replicates** tab. The table displays the results by biological replicate group.
- 4. Click the Experiments tab to select the experiment whose Box plot to view.

5. View the values in the Well Results Data pane. View the C_T , ΔC_T Mean, and ΔC_T SE values to evaluate the C_T precision of the replicate groups. In the example study, the low ΔC_T SE values indicate these replicates have good C_T precision.

View the Technical Replicates Correlation plot

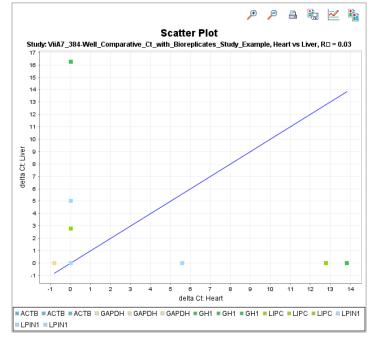
The Technical Replicates Correlation plot displays the correlation between the target genes in one or more samples.


The Technical Correlation Group plot is made of two components, the scatter plot and the heat map.

Scatter Plot

The scatter plot shows the distribution of ΔC_T of targets for different samples.

If a correlation (represented by R² or the coefficient of determination) exists among the targets in the samples, the targets appear on or along the line of reference. If the correlation is weak or not present, the targets appear scattered in the plot, away from the line of reference.


The line of reference is fixed in the ViiATM 7 Software.

162

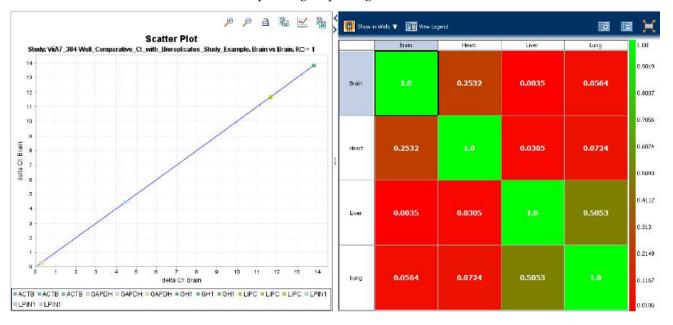
If:

- R² =/≈ 1, then the correlation is strong
- R² < 1, then the correlation is weak
- R² = 0, then there is no correlation

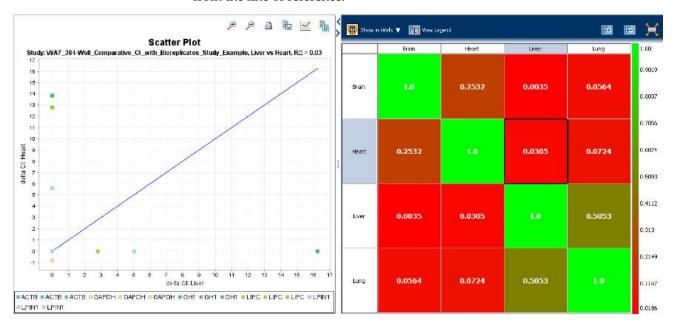
Heat maps

The heat map shows the variation of coefficient determination for different scatter plots. Each cell of the heat map represents a different scatter plot, and therefore a different value for R^2 . The cells inclined to red represent a lower R^2 value; the cells inclined to green represent a higher R^2 value.

In the example study, you view the scatter plots and heat maps of five targets in four different samples:


- LPIN1
- GAPDH
- LIPC
- GH1
- ACTB

The samples are Brain, Heart, Kidney and Lung.

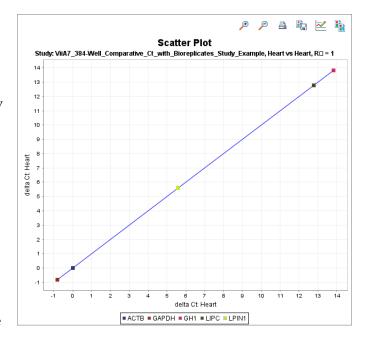

1. In the QC Plots pane, click
Technical
Replicates
Correlation to access the Heat Map.

2. In the Heat Map, click the cell with a correlation value, $R^2 = /\approx 1$. The corresponding scatter plot pane displays the scatter plot of the targets in that technical replicate group along the line of reference.

3. Click the cell with a correlation value, $R^2 = /\approx 0$. The corresponding scatter plot pane displays the scatter plot of the targets in that technical replicate group away from the line of reference.

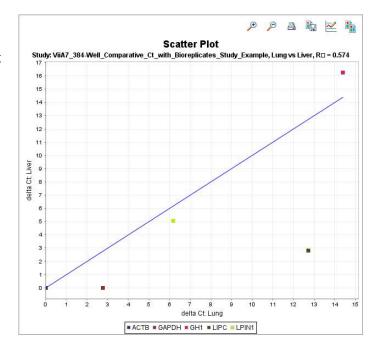
View the Biological Group Correlation plot

The Biological Group Correlation plot displays the correlation between the target genes in one or more biological group samples. Biological groups provide a broader set of samples, with the same targets.


Note: If the experiments in your study do not use biological replicate groups, see "Define Replicates" on page 136 to create a new biological group.

The Biological Group Correlation plot is also made of two components, the scatter plot and the heat map.

Scatter Plot


The scatter plot shows the distribution of ΔC_T of targets for different biological groups. If a correlation (represented by R² or the coefficient of determination) exists among the targets in the biological groups, the targets appear on or along the line of reference. A weak correlation or no correlation is represented by the targets being scattered in the plot and away from the line of reference.

Note: The line of reference is fixed in the $ViiA^{TM}$ 7 Software.

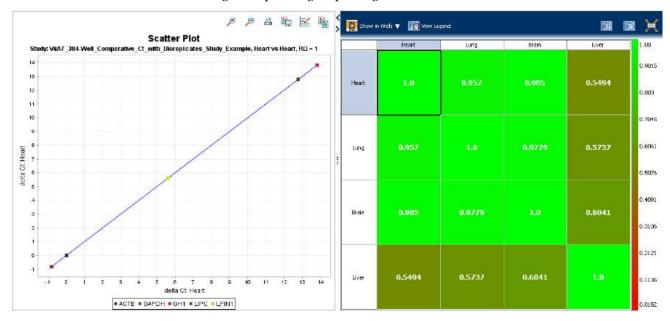
If:

- $R^2 = /\approx 1$, then the correlation is strong
- R² < 1, then the correlation is weak
- R² = 0, then there is no correlation

Heat maps

The heat map shows the variation of coefficient determination for different scatter plots. Each cell of the heat map represents a different scatter plot, and therefore a different value for R². The dull green cells represent a lower R² value; the bright green cells represent a higher R² value.

In the example study, you view the scatter plots and heat maps of eight targets across four biological groups:


- LPIN1
- GAPDH
- LIPC
- GH1
- ACTB

Technical replicate samples of Brain cDNA belong to the biological group Brain, those of Lung cDNA belong to biological group Lung, technical replicate samples of Liver cDNA belong to the biological group Liver, and those of Heart cDNA belong to the biological group Heart.

To view the Biological Group Correlation plot:

- 1. In the QC Plots pane, click **Biological Group Correlation** to access the heat map.
- 2. In the Heat Map, click the cell with a correlation value, $R^2 = /\approx 1$. The corresponding scatter plot pane displays the scatter plot of the targets in that biological replicate group along the line of reference.

3. Click the cell with a correlation value, $R^2 = /\approx 0$. The corresponding scatter plot pane displays the scatter plot of the targets in that biological replicate group away from the line of reference.

Tips for viewing your own scatter plots and heat maps

When you analyze your study, look for scatter plots and heat maps that display a correlation value that is $=/\approx 1$ for samples that come from the same source or tissue (technical or biological replicates). If the replicates do not correlate well, that could be a sign that there is a problem with a sample.

If your study does not meet the guidelines above, you can omit individual wells from the analysis. See "Omit wells from the analysis" on page 175.

View the QC Summary

The QC Summary screen displays a list of the ViiATM 7 Software flags, and it includes the flag frequency and location for any experiment that is added to a study.

About the example study

In the Comparative C_T example study, you review the QC Summary screen for any flags generated by the study data. In the example study, several wells produced data that generated flags.

View the QC Summary

- From the Study Menu pane, select Analysis ➤ QC Summary.
 Note: If no data are displayed, click Analyze.
- **2.** In the Flags Summary table, look in the Frequency column to determine which flags appear in the study. In the example study. The EXPFAIL flag appears 10 times and the NOAMP flag appears once.
 - **Note:** A 0 displayed in the Frequency column indicates that the flag does not appear in the study.
- **3.** For each flag that appears in the study, click the flag row to display details about the flag in the Flag Details table. In the example study, the NOAMP flag indicates no amplification and the EXPFAIL flag indicates that the exponential algorithm failed.

4. Consider removing the NOAMP well from the analysis. See "Omit wells from the analysis" on page 175.

Possible flags

For Comparative C_T studies, the flags listed below may be generated by the study data

If a flag does not appear in the study, its frequency is 0. If the frequency is >0, the flag appears somewhere in the study, and the associated well position is listed in the Wells column.

Flag	Description	
Pre-processing flag		
OFFSCALE	Fluorescence is offscale	
Primary analysis flags		
BADROX	Bad passive reference signal	
NOAMP	No amplification	
NOISE	Noise higher than others in plate	
SPIKE	Noise spikes	
NOSIGNAL	No signal in well	
EXPFAIL	Exponential algorithm failed	
BLFAIL	Baseline algorithm failed	
THOLDFAIL	Thresholding algorithm failed	
CTFAIL	C _T algorithm failed	

Flag	Description	
Secondary analysis flags		
OUTLIERRG	Outlier in replicate group	
AMPNC	Amplification in negative control	
HIGHSD	High standard deviation in replicate group	

Note: When you use the Relative Threshold algorithm, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag).

Tips for using flags to evaluate your study

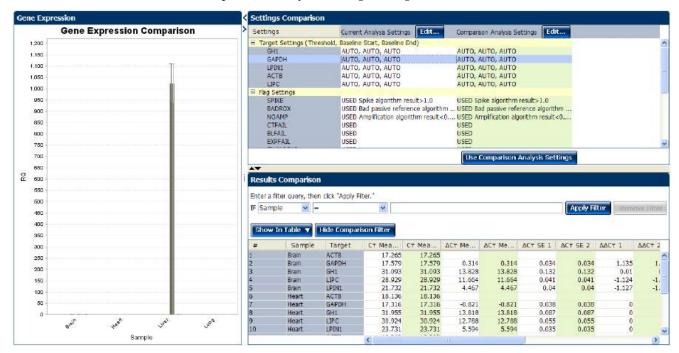
• In the Flag Summary table, click each flag that has a frequency >0 to display details about the flag in the Flag Details table. If needed, click the troubleshooting link in the Flag Details table to view information on correcting the flag.

Note: In the Flag Details table, the numbers on each flag symbol indicate the number of flags generated for that well. For example, ▲ indicates that two flags have been generated for that well.

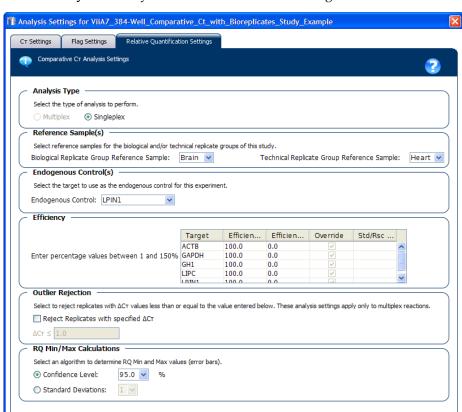
- You can change the flag settings. For more information, see "Flag Settings" on page 145:
 - Adjust the sensitivity so that more wells or fewer wells are flagged.
 - Change the flags that are applied by the ViiA™ 7 Software.
- You can omit individual wells from the analysis. See "Omit wells from the analysis" on page 175.

Compare analysis settings

Use the Compare Settings screen to perform a side-by-side comparison of analysis settings for a comparative $_{\rm CT}$ study. You can change one or more of the analysis settings, then compare the new results with the previous results. For example, you can compare the effects of:


- Using multiple endogenous controls versus a single endogenous control.
- Changing the amplification efficiency of a specific target versus keeping it at 100%.

About the example study


In the comparative C_T example study, you change the endogenous control to LPIN1, then compare results.

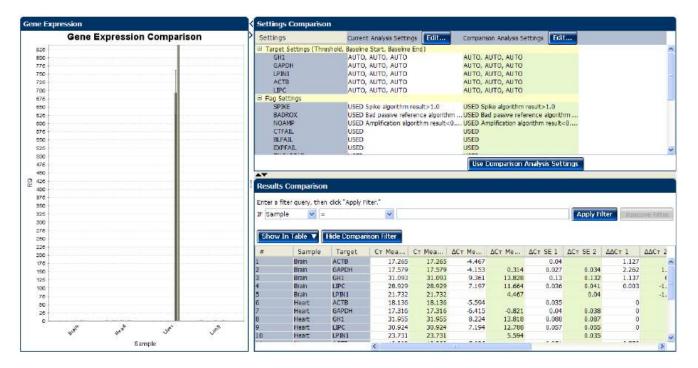
Modify comparison criteria

- 1. From the Study Menu pane, select **Analysis** ▶ **Compare Settings**. When the Compare Settings screen is initially displayed (before you make any changes):
 - In the Settings Comparison pane, the green column is titled "Current Analysis Settings," the white column is titled "Comparison Analysis Settings," and the Use Comparison Analysis Settings button is under the green column.
 - In the Results Comparison pane, values in the white columns and values in the green columns are the same.
 - The Gene Expression Comparison plot is the same plot that is displayed in the Gene Expression screen (**Analysis Gene Expression**).
- **2.** In the Settings Comparison pane, click **Edit** in the green column to open the Comparison Analysis Settings dialog box.

- **3.** In the Comparison Analysis Settings dialog box, change the endogenous control:
 - a. Select the Relative Quantification Settings tab.
 - **b.** In the Endogenous Control(s) pane, select **LIPN1** from the Endogenous Control drop-down menu.

c. Click **Analyze** to analyze the data and close the dialog box.

4. In the Settings Comparison pane, click **Use Comparison Analysis Settings** under the green column, then compare the results:


Save to Library | Load from Library | Revert to Default Analysis Settings | Analyze | Cancel

- In the Settings Comparison pane, the white column is titled "Comparison Analysis Settings," the green column is titled "Current Analysis Settings," and the Use Comparison Analysis Settings button is under the white column.
- In the Results Comparison pane, values in the white columns are based on the default analysis settings, and values in the green columns are based on the modified analysis settings. In the example experiment, changing the endogenous control to 18S affects the RQ values. To view the RQ values, scroll to the left. If desired, you can click and drag the RQ column headings so that they appear first in the table.
- The Gene Expression Comparison plot displays the default analysis settings (the values from the white columns).

Note: The Gene Expression Comparison plot has limited functions. For example, you cannot change to log scale and you cannot view by target.

172

Note: The default analysis settings are the settings automatically made by the software when the study is initially analyzed.

5. From the Study Menu pane, select **Analysis** ▶ **Gene Expression** to view the gene expression plot using the modified analysis settings.

Note: In the Gene Expression screen you can view the modified data in log scale, by target, and so on. See "Assess the gene expression profile using the Gene Expression Plot" on page 150.

- **6.** (*Optional*) View the data in the other analysis screens. All other analysis screens for the study display the data using the modified analysis settings.
- **7.** Close the study.
 - Save your changes before closing the study.
 Or
 - Close the study without saving your changes. If you do not save your changes, the software reverts to the default analysis settings the next time you open the study.

Tips for managing your own comparison

- Edit the comparison analysis settings as desired. For information on editing the settings, see "View the analysis settings" on page 143.
- After making your first round of changes to the analysis settings, you can continue making changes using one of the following methods:
 - (Recommended) Revert to the saved analysis settings, then make new changes. To do this: In the Settings Comparison pane, click Use Comparative Analysis Settings (now under the white column) to revert to the saved analysis settings, then repeat steps 2 through 6 above. This method ensures that you do not lose the saved analysis settings.

Note: If you have made changes, but have not saved them, the software reverts to the default analysis settings when you click **Use Comparative Analysis Settings**. The default analysis settings are the settings automatically made by the software when the study is initially analyzed.

Continually compare new settings with previous settings. To do this: In the Settings Comparison pane, alternate clicking Edit in the white and green columns, then repeat steps 3 through 6 above. This method does not allow you to return to your saved settings; subsequent comparisons are made with the previous analysis settings, building upon any changes that you have already made.

Revert to the default analysis settings

IMPORTANT! The default analysis settings are defined by the software. If you make changes to the analysis settings and save the study, the saved changes are lost when you revert to the default analysis settings.

- 1. In the Settings Comparison pane, click **Edit** next to the settings you want to revert to the default: *Current Analysis Settings* or *Comparison Analysis Settings*.
- **2.** In the Analysis Settings dialog box, revert to defaults and reanalyze the data:
 - a. Click Revert to Default Analysis Settings.
 - **b.** At the prompt, click **Yes**.

- **c.** Click **Analyze** to analyze the data and close the dialog box.
- **3.** In the Settings Comparison pane, click **Use Comparison Analysis Settings**. In the Results Comparison pane, values for the settings you selected to edit in step 1 ("Current Analysis Settings" or "Comparison Analysis Settings") are generated according to the default analysis settings.

Omit wells from the analysis

You can use the Well Table to omit individual wells from the analysis. To omit a well:

- 1. From the Study Menu pane, select one of the following analysis screens:
 - Analysis ▶ Amplification Plot
 - Analysis Multicomponent Plot
 - Analysis ▶ Multiple Plots View
- 2. In the Experiment Data pane, select the experiment that contains the well to omit.
- **3.** In the Well Results Data pane, click the **Well Table** tab, then select the check box in the Omit column for the well to omit.

Note: You cannot omit all technical replicates that belong to a reference sample or a reference biological group, or that serve as the endogenous control.

Export the study

Note: If you are using RealTime StatMiner[®] Software to analyze the exported data, make sure you have assigned a sample to all the wells containing data in the individual experiments. If a sample is not assigned, the RealTime StatMiner[®] Software reports an error during import.

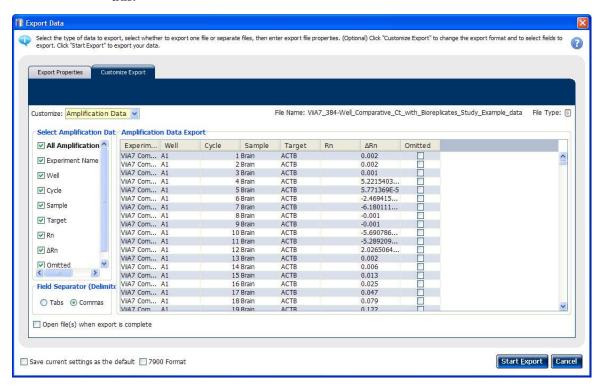
You can export the data within a study from the Analysis screen. To export a study:

- 1. On the Analysis screen, click **Export** to access the Export Properties tab.
- 2. Define export properties.
 - **a.** Select the data to export. Options are:
 - Amplification Data
 - Results
 - · Technical Analysis Result
 - BioGroup Analysis Result
 - QC Summary
 - **b.** Select **One File** or **Separate Files** from the drop-down menu to export all data to one file or in separate files for each data type respectively.
 - **c.** Enter the export file properties and file name.
 - **d.** Select the file type from the **File Type** drop-down menu. You can choose from *.txt, *.xls, and *.xlsx.
 - **e.** Enter the Export File Location. The default location is C:\Applied Biosystems\ViiA7 Software v1.1\experiments.
 - **f.** Select the Open file(s) when export is complete check box to automatically open the file when export is complete.

For the example study, enter:

Field or Selection	Entry	
Select Data to export	Amplification Data	
Select one file or separate files	One File	
Export File Name	ViiA7_384- Well_Comparative_Ct_with_Bioreplicates_Study_Example_data	
File Type	*.txt	
Export File Location	<pre><drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments</drive></pre>	
Open file(s) when export is complete	Unchecked	
Save current settings as the default	Unchecked	
7900 Format	Unchecked	

The Export Data screen looks like this:


- **3.** To change the export format, complete the tasks on the Customize Export tab.
 - **Note:** To complete the tasks on the Customize Export tab you must have at least one type of data to export.
 - **a.** Select the data from the Export Properties tab. The type of data that you selected in the Export Properties tab appears in the Customize field in the Customize Export tab.
 - **b.** Select the data type content.
 - **c.** Select the Tabs or Commas radio button to select the Field Separator (Delimiter).
 - **d.** Select the Open file(s) when export is complete check box to automatically open the file when export is complete.

For the example study, enter:

Field or Selection	Entry
Customize	Amplification Data
Field Separator (Delimited)	Commas
Open file(s) when export is complete	Unchecked
Save current settings as the default	Unchecked
7900 Format	Unchecked

The Export Data screen for customized export of Amplification Data looks like

- **4.** Select the **Save current settings as the default** check box to save the export settings that you have modified. Alternatively, select the 7900 Format check box to save the export settings in the 7900 format.
- 5. Click Start Export.

For more information

For more information on	Refer to	Part number
Calculating Relative Quantification Values	User Bulletin #2: Relative Quantitation of Gene Expression.	4303859
Consumables	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™7 System Experiments.</i>	4441434
	Appendix A in Booklet 7, ViiA [™] 7 System Experiments - Appendixes	
Publishing data	Chapter 1 in Booklet 1, Getting Started with ViiA [™] 7 System Experiments.	4441434

A	baseline values, correcting 50, 113
adjusting parameters, re-analyzing own	Biologial Replicates and Technical Replicates, column
experiments 63, 123	headings
Advanced Settings tab 66, 126	$\Delta\Delta C_{\mathrm{T}}$ 155
Algorithm Settings	biological group correlation plot, viewing
Baseline Threshold 65, 125, 144	Heat Map 166
Relative Threshold 65, 125, 144	Scatter Plot 165
amplification efficiency, factors affecting	biological replicate groups
PCR inhibitors 43	adding 136
standard quantities 43	editing 138
standard replicates 43	removing 138
amplification plot	Biological Replicates tab 154
amplification efficiency 23, 43, 69	BLFAIL flag 61, 121, 169
- · · · · · · · · · · · · · · · · · · ·	box plots, viewing 161
assessing amplification results 44, 107, 147	1 , 0
reviewing baseline values 45, 108, 147	C
reviewing outliers 47, 110	C
reviewing threshold values 46, 109, 148	cocktail mix 28, 91
tips for analyzing own experiments 48, 111	comparative CT experiments
tips for analyzing own study 149	about 75
viewing 35, 44, 97, 107	example experiment 77
AMPNC flag 62, 121, 170	overview 76
analysis results, exporting 71, 131	PCR options 76
analysis settings	required components, assemble 76
adjusting 63, 123	comparison criteria
Advanced Settings 63, 123	modifying 171
comparing 170	tips for managing own study 174
C _T Settings 63, 123	correcting baseline and threshold values 149
defining 17, 81	C _T settings
Flag Settings 63, 123	algorithm settings 64, 124, 144
Relative Quantification Settings 63, 123	data step, selecting 64, 124, 144
Standard Curve Settings 63	default 65, 125, 145
viewing 143	target 65, 125, 145
Analyze	C _T Settings tab 64, 124, 144, 61, 121, 169
Amplification Plot 44, 107	
Gene Expression Plot 51, 103	D
Multicomponent Plot 55, 114	D
QC Plot 59, 118	defining samples 17, 81
QC Summary 60, 119	defining targets 17, 81
Raw Data Plot 57, 116	designing experiment
Standard Curve Plot 41	assigning targets, samples, and biological
Study 140	groups 19, 83
Well Table 53, 105	defining and setting up standards 19
Auto Export 71, 131	defining experiment properties 16, 80
Automatic Baseline, advanced settings 67, 127	defining targets, samples, and biological
Automatic Threshold 65, 125, 145	replicates 17, 81
	ordering materials 22, 85
В	setting up run method 21, 84
	tips for designing own experiment 22, 86
BADROX flag 61, 120, 169	

dye accuracy	H
irregularities in the signal 57, 116, 159	HIGHSD flag 62, 121, 170
negative control wells 57, 116, 159	Thigh 15D hag 62, 121, 176
passive reference 57, 116, 159	
reporter dye 57, 116, 159	I I
	improving C _T precision, omitting wells 68, 127
E	1 0 11
	M
endogenous control profile, viewing 160	
endogenous control, selecting 22, 86	multicomponent plot
experiment properties, defining 16, 80	confirming dye accuracy 55, 114, 158
EXPFAIL flag 61, 120, 169	tips for analyzing own experiment 57, 116
Export 71, 131	tips for analyzing own study 159
	viewing 55, 114, 158
F	
Flag Settings tab 65, 125, 145	N
	NOAMP flag 61, 120, 169
flags, QC	NOISE flag 61, 120, 169
AMPNC 62, 121, 170	NOSIGNAL flag 61, 120, 169
BADROX 61, 120, 169	11031G11AL Hag 01, 120, 107
BLFAIL 61, 121, 169	
CTFAIL 61, 121, 169	0
EXPFAIL 61, 120, 169	OFFSCALE flag 61, 120, 169
HIGHSD 62, 121, 170	ordering materials 22, 85
NOAMP 61, 120, 169	OUTLIERRG flag 61, 121, 170
NOISE 61, 120, 169	Collination and vi, 121, 170
NOSIGNAL 61, 120, 169	
OFFSCALE 61, 120, 169	P
OUTLIERRG 61, 121, 170	PCR options
SPIKE 61, 120, 169	1-step PCR 13, 77
THOLDFAIL 61, 121, 169	2-step PCR 13, 77
tips for evaluating own study 170	Multiplex PCR 13, 77
	Singleplex PCR 13, 77
G	preparing reactions
gene expression plot	reaction mix 28, 91
assessing gene expression profile 51, 103, 150	reaction plate 29, 92
assessing own experiments 53, 105	required materials 26, 90
tips for assessing own study 153	sample dilutions 26, 90
viewing 52, 104, 150	standard dilution series 27
gene expression plots available	template 26, 90
RQ vs BioGroup 150	tips for your own experiment 32, 93
RQ vs Sample 52, 104, 150	preparing template
RQ vs Target 51, 103, 150	Complementary DNA 32
_	Genomic DNA 32
gene expression study about 134	Pre-processing flag
	OFFSCALE 61, 120, 169
designing and analyzing 133	Primary analysis flags
example study 134	BADROX 61, 120, 169
	BLFAIL 61, 121, 169
	DEI / ME 01, 121, 10/

CTFAIL 61, 121, 169	replicates 12, 76
EXPFAIL 61, 120, 169	sample 12, 76
NOAMP 61, 120, 169	standard 12
NOISE 61, 120, 169	standard dilution series 12
NOSIGNAL 61, 120, 169	results data, viewing 156
SPIKE 61, 120, 169	review results 41, 103
THOLDFAIL 61, 121, 169	run
publishing data 62, 121, 178	monitoring 34, 96
	starting 34, 96
Q	run method
	reaction volume per well 21, 84
QC plots	setting up 21, 84
Biological Replicates Correlation 160	thermal profile 21, 84
Box Plot 160	viewing 36, 98
Endogenous Control Profile 160	Run screen
Technical Replicates Correlation 160	Amplification Plot 35, 97
viewing 160	Run Method 36, 98
viewing endogenous control profile 59, 118	Temperature Plot 35, 97
QC Summary reviewing flags 60, 119	View Run Data 36, 98
viewing 168	
viewing 100	S
R	sample dilutions, preparing reactions 26, 90
raw data plot	samples, defining 17, 81
determining signal accuracy 57, 116	scatter plots and heat maps, tips for viewing 168
tips for analyzing own experiments 59, 118	Secondary analysis flags
viewing 57, 116	AMPNC 62, 121, 170
reaction mix	HIGHSD 62, 121, 170
components 26, 90	OUTLIERRG 61, 121, 170
preparing reactions 28, 91	SPIKE flag 61, 120, 169
reactions, assembling materials for 26, 90	standard curve 22
Relative Quantification Settings tab 66, 126, 146	standard curve plot
relative standard curve experiments	tips for analyzing own experiment 43
about 11	viewing and assessing 41
example experiment 13	Standard Curve Settings tab 67
overview 12	standard curve values
PCR options 12	amplification efficiency 41
required components, assemble 12	correlation coefficient 41
relative target quantity 12	C _T values 41
replicate results data and well results data,	standard dilution series, preparing reactions 27
viewing 154	standards, defining and setting up 19
replicate results, tips for viewing in own study 157	study
Replicates, defining 136	creating 135
replicates, omitting 158	exporting 175
required components	
endogenous control 12, 76	T
negative controls 12, 76	targets and samples, assigning 83
reference sample 12, 76	targets, defining 17, 81
	11, 01

```
targets, samples, and biological groups
                                                        wells, omitting from analysis 175
    assigning 19, 83
   defining 17, 81
Technical Replicates and Biological Replicates, col-
       umn headings
    # Replicates 155
    Biological Group 155
   C_{T} 155
   C<sub>T</sub> Mean 155
   DCT 155
   Experiment 155
   Flag 155
   Omit (Replicate Results Data) 155
   Omit (Well Results Data) 155
   RQ 155
   RQ Max 156
   RQ Min 156
   Sample 156
   Target 156
   Well 156
technical replicates correlation plot, viewing
   Heat Map 163
   Scatter Plot 162
Technical Replicates tab 154
temperature plot, viewing 97
template, preparing reactions 26, 90
THOLDFAIL flag 61, 121, 169
threshold cycle 43
threshold values, correcting 49, 112
tips
   analyzing own study 144
   designing own study 139
tips for your own experiment, preparing reactions 32,
touchscreen, running the experiment from
    Experiment View 37, 99
   Time View 37, 99
V
viewing replicate results data 154
viewing well results data 154
W
well table
    assessing own experiments 54, 106
   identifying well problems 53, 105
   viewing 54, 106
```

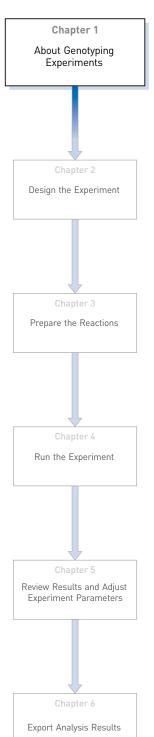
Part Number 4441434 Rev. C 12/2011 applied biosystems by Life technologies

BOOKLET 4 Running Genotyping Experiments

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Contents

CHAPTER 1	About Genotyping Experiments	7
	About data collection	8
	About TaqMan® SNP Genotyping assays	8
	About TaqMan® MGB probes	9
	5' nuclease assay	9
	Minimizing non-specific fluorescence	10
	Reading and analyzing the plates	10
	About the example experiment	11
CHAPTER 2	Design the Experiment	13
	Define the experiment properties	14
	Define SNPs and samples	15
	Assign markers and samples	17
	Set up the run method	19
	Order materials for the experiment	21
	For more information	
CHAPTER 3	Prepare the Reactions	23
	Assemble required materials	24
	Prepare the sample dilutions	24
	Prepare the reaction mix ("cocktail mix")	24
	Prepare the reaction plate	25
	Example experiment reaction plate components	25
	To prepare the reaction plate: dried gDNA	
	To prepare the reaction plate: wet gDNA	
	Tips for preparing reactions for your own experiments	
	Tips for preparing samples	
	Tips for preparing the reaction mix	
	For more information	27


CHAPTER 4	Run the Experiment	. 29
	Start the run	30
	Monitor the run	30
	From the Instrument Console of the ViiA™ 7 Software	
	From the ViiA [™] 7 Instrument touchscreen	33
CHAPTER 5	Review Results and Adjust Experiment Parameters	. 35
	Section 5.1 Review Results	37
	Analyze the example experiment	37
	View clusters in the Allelic Discrimination Plot	37
	To view and assess the allelic discrimination plot	37
	Troubleshoot clustering on the Allelic Discrimination Plot	39
	Confirm setup accuracy using Plate Layout	40
	Example experiment plate layout values	40
	View the layout	40
	Tips for troubleshooting plate setup in your own experiment	42
	Assess amplification results using the Amplification Plot	43
	About amplification plots	43
	View the ΔRn vs. Cycle plot	43
	Identify well problems using the Well Table	46
	Example experiment values and flags	46
	View the well table	
	Identify quality control (QC) problems	
	Tips for analyzing your own experiments	
	Confirm accurate dye signal using the Multicomponent Plot	
	Purpose	
	View the Multicomponent Plot	
	Tips for confirming dye accuracy in your own experiment	
	Determine signal accuracy using the Raw Data Plot	
	Purpose	
	View the Raw Data Plot	
	Tips for determining signal accuracy in your own experiment	
	Review the flags in the QC Summary	
	View the QC Summary	
	Possible flags	
	For more information	
	Section 5.2 Adjust parameters for re-analysis of your own experiments	
	Adjust analysis settings	
	View the analysis settings	
	Adjust analysis settings	
	For more information	60

CHAPTER 6	Export Analysis Results	61
	Index	63

Contents

About Genotyping Experiments

This chapter covers:

About data collection
About TaqMan® SNP Genotyping assays
About TaqMan® MGB probes
■ 5¢ nuclease assay
Minimizing non-specific fluorescence
Reading and analyzing the plates
About the example experiment

IMPORTANT! First-time users of the ViiATM 7 System, please read Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments* and Booklet 7, *ViiA*TM 7 *System Experiments - Appendixes* of this binder thoroughly. The booklets provide information and general instructions that are applicable to all the experiments described in this binder.

Note: For more information about any of the topics discussed in this guide, access the Help from within Applied Biosystems ViiA[™] 7 Software by pressing **F1**, clicking in the toolbar, or selecting **Help ▶ ViiA[™] 7 Software Help**.

About data collection

Genotyping experiments are performed to detect single nucleotide polymorphism (SNP) variants of a target nucleic acid sequence in samples. The PCR reactions contain primers designed to amplify the sequence containing the SNP and reagents to detect two different alleles.

You can collect the results of a genotyping experiment in two different ways: At the end of the experiment, or continuously during the experiment. Data collection at the end of the experiment is called end-point data collection. Data collection during the experiment run is considered real-time PCR. The real-time data helps further data analysis.

In end-point data collection, the normalized intensity of the reporter dye, or Rn, is the data collected. Some end-point experiments also include pre-PCR (data collected before the amplification process) data collection. The system calculates the delta Rn (Δ Rn) value per the following formula:

 Δ Rn = Rn (post-PCR read) – Rn (pre-PCR read), where Rn = normalized readings.

About TaqMan® SNP Genotyping assays

A Genotyping assay detects variants of a single nucleic acid sequence, without quantifying the target. The presence of two probes in each reaction allows Genotyping of the two possible variants at the single nucleotide polymorphism (SNP) site in a target sequence.

Each TaqMan[®] SNP Genotyping Assay consists of a single, ready-to-use tube containing:

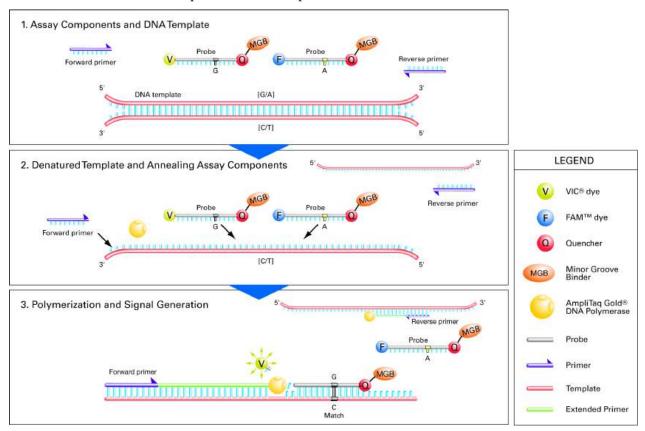
- Two sequence-specific primers for amplifying the polymorphism of interest
- Two allele-specific TaqMan[®] MGB probes for detecting the alleles for the specific polymorphism of interest

About TaqMan® MGB probes

Each allele-specific TaqMan® MGB probe has:

- A reporter dye at its 5' end:
 - VIC® dye is linked to the 5' end of the Allele 1 probe.
 - FAMTM dye is linked to the 5' end of the Allele 2 probe.

The Allele 1 VIC® dye-labeled probe corresponds to the first nucleotide inside the square brackets of the context sequence in the assay information file (AIF) shipped with each order. The Allele 2 FAM $^{\text{TM}}$ dye-labeled probe corresponds to the second nucleotide inside the square brackets of the context sequence in the AIF. For the context sequence ATCGATT[G/T]ATCC, the VIC® dye-labeled probe binds to the G allele, and the FAM $^{\text{TM}}$ dye-labeled probe to the T allele.


- A minor groove binder (MGB), which increases the melting temperature (T_m) for a given probe length and allows the design of shorter probes. The use of shorter probes results in greater differences in T_m values between matched and mismatched probes, and more robust genotyping.
- A non-fluorescent quencher (NFQ) at its 3' end, which allows for detection of the reporter dye fluorescence with greater sensitivity than with a fluorescent quencher.

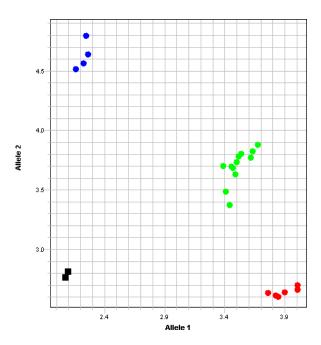
5' nuclease assay

The figure below is a schematic depiction of the 5' nuclease assay. During PCR:

- Each TaqMan[®] MGB probe anneals specifically to its complementary sequence between the forward and reverse primer sites.
- When the oligonucleotide probe is intact, the proximity of the quencher dye to the reporter dye quenches the reporter signal.
- AmpliTaq Gold[®] DNA polymerase extends the primers bound to the genomic DNA template.

- AmpliTaq Gold[®] DNA polymerase (with its 5′ nuclease activity) cleaves probes that are hybridized to the target sequence.
- Cleavage of the probes hybridized to the target sequence separates the quencher dye from the reporter dye, resulting in increased fluorescence by the reporter. The fluorescence signal generated by PCR amplification indicates which alleles are present in the sample.

Minimizing non-specific fluorescence


In TaqMan[®] assays, fluorescence from nonspecifically bound probes is reduced, because nucleotide mismatches between a probe and a sequence reduce the chances that the probe will be cleaved. The probe's short length means that a one-base-pair mismatch will a have a larger negative effect on the binding. The mismatched probe will not bind tightly to the allele; the AmpliTaq Gold[®] DNA polymerase will likely displace the probe without cleaving the dye.

Reading and analyzing the plates

The ViiATM 7 Software genotypes the DNA samples from the reaction plate simultaneously. First, the software normalizes the fluorescence of the reporter dyes to the fluorescence of the passive reference dye in each well. Next, the software plots the normalized intensities (Rn) of the reporter dyes in each sample well on an Allelic

Discrimination Plot, which contrasts the reporter dye intensities of the allele-specific probes. Finally, the Vii A^{TM} 7 Software algorithmically clusters the sample data, and assigns a genotype call to the samples of each cluster according to its position on the plot.

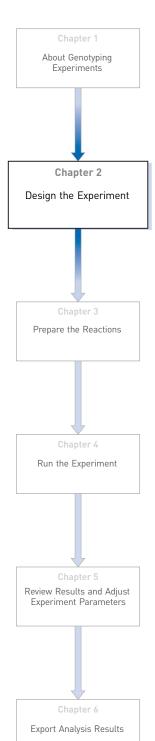
Note: The ViiATM 7 Software clustering algorithm does not call genotypes when only one genotype is present in an experiment.

The clustering of datapoints can vary along the horizontal axis (Allele 1), vertical axis (Allele 2), or diagonal (Allele 1/Allele 2). This variation results from differences in the extent of reporter dye fluorescent intensity after PCR amplification. The table below shows the correlation between fluorescence signals and sequences in a sample.

A substantial increase in	Indicates
VIC® dye-labeled probe fluorescence only	Homozygosity for Allele 1
FAM [™] dye-labeled probe fluorescence only	Homozygosity for Allele 2
Both VIC [®] and FAM [™] dye-labeled probes fluorescence	Allele 1-Allele 2 heterozygosity

About the example experiment

To illustrate how to perform Genotyping experiments, this guide leads you through the process of designing and performing an example experiment. The example experiment represents a typical setup that you can use to quickly familiarize yourself with a ViiA $^{\text{TM}}$ 7 System.


The objective of the example Genotyping experiment is to investigate SNP rs8039, where possible genotypes are AA, AC, and CC. In the example, two unknown genomic DNA (gDNA) samples were genotyped using TaqMan[®] Drug Metabolism Genotyping Assay ID C__11711420_30. The reactions were set up so that the PCR

Chapter 1 About Genotyping Experiments About the example experiment

primers and probes that target both alleles of SNP rs8039 were present in the same well. The PCR was performed using the TaqMan[®] Genotyping Master Mix and run according to the protocol that is described in the *Performing a TaqMan*[®] *Drug Metabolism Genotyping Assay*.

Design the Experiment

This chapter explains how to design the example experiment from the Experiment Setup menu.

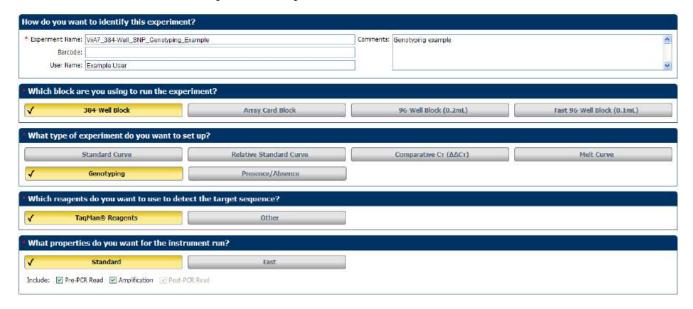
This chapter covers:

Define the experiment properties	14
Define SNPs and samples	15
Assign markers and samples	17
Set up the run method	19
Order materials for the experiment	21
For more information	21

Note: To automatically export the analyzed data to a specified location, select the Auto Export task from the Export screen, before running the experiment. For more information on Auto Export, refer to Chapter 1 in Booklet 1, *Getting Started with ViiA* $^{\text{TM}}$ 7 *System Experiments*.

Define the experiment properties

Click **Experiment Setup** ▶ **Experiment Properties** to create a new experiment in the ViiA[™] 7 Software. Enter:


Field	Entry
Experiment Name	ViiA7_384-Well_SNP_Genotyping_Example
Barcode	Leave field empty
User Name	Example User
Comments	Genotyping example
Block	384-Well Block
Experiment Type	Genotyping
Reagents	TaqMan [®] Reagents
Ramp speed	Standard

Select all three data-collection check boxes: Pre-PCR, Amplification, and Post-PCR collection methods:

Pre-PCR Read	Checked
Amplification	Checked
Post-PCR Read	Checked

Save the experiment.

Your Experiment Properties screen should look like this:

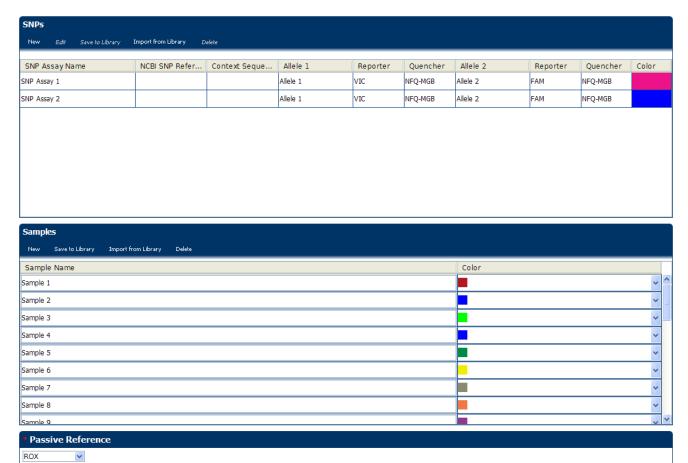
Define SNPs and samples

Click **Define** to access the Define screen. Enter:

1. SNP Assays

SNP assay name	NCBI SNP reference	Context sequence	Allele 1	Reporter	Quencher	Allele 2	Reporter	Quencher	Color
SNP Assay 1			Allele1	VIC	NFQ-MGB	Allele2	FAM	NFQ-MGB	
SNP Assay 2			Allele1	VIC	NFQ-MGB	Allele2	FAM	NFQ-MGB	

Note: The NCBI SNP reference and Context sequence fields are optional fields and are used for reference. They are not required to run an experiment.


2. Samples

Sample name	Color	Sample name	Color	Sample name	Color
Sample 1		Sample 11		Sample 21	
Sample 2		Sample 12		Sample 22	
Sample 3		Sample 13		Sample 23	
Sample 4		Sample 14		Sample 24	
Sample 5		Sample 15		Sample 25	
Sample 6		Sample 16		Sample 26	
Sample 7		Sample 17		Sample 27	
Sample 8		Sample 18		Sample 28	
Sample 9		Sample 19		Sample 29	
Sample 10		Sample 20		Sample 30	

3. Dye to be used as a Passive Reference ROX

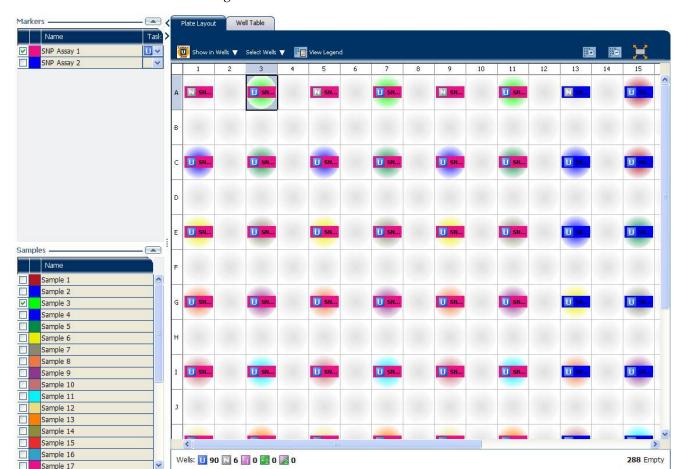
2 Chapter 2 Design the Experiment Define SNPs and samples

Your Define screen should look like this:

Note: This example experiment does not define biological replicate groups. Leave Biological Replicate Groups blank.

Assign markers and samples

Click **Assign** to access the Assign screen. Enter the SNP assays and samples:


• SNP Assay 1

Target name	Well number	Task	Sample
SNP	A3, A5, A7	Unknown	Sample 3
Assay 1	C1, C5, C9		Sample 4
	C3, C7, C11		Sample 5
	E1, E5, E9		Sample 6
	E3, E7, E11		Sample 7
	G1, G5, G9		Sample 8
	G3, G7, G11		Sample 9
	11, 15, 19		Sample 10
	13, 17, 111		Sample 11
	K1, K5, K9		Sample 12
	K3, K7, K11		Sample 13
	M1, M5, M9		Sample 14
	M3, M7, M11		Sample 15
	01, 05, 09		Sample 16
	03, 07, 011		Sample 17
SNP Assay 1	A1, A5, A9	Negative	NTC

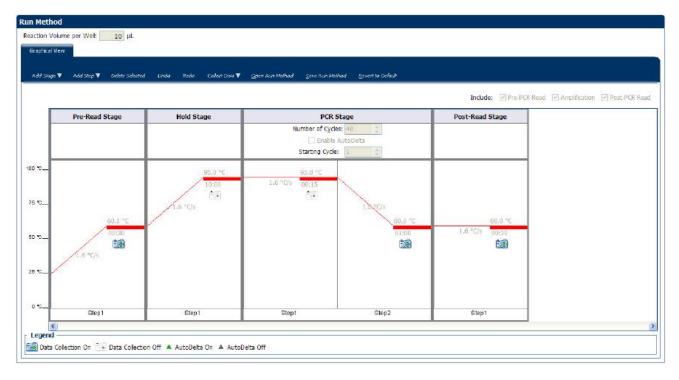
2 Chapter 2 Design the Experiment Assign markers and samples

• SNP Assay 2

Target name	Well number	Task	Sample
SNP	A15, A19, A23	Unknown	Sample 1
Assay 2	C13, C17, C21		Sample 2
	C15, C19, C23		Sample 18
	E13, E17, E21		Sample 19
	E15, E19, E23		Sample 20
	G13, G17, G21		Sample 21
	G15, G19, G23		Sample 22
	113, 117, 121		Sample 23
	115, 119, 123		Sample 24
	K13, K17, K21		Sample 25
	K15, K19, K23		Sample 26
	M13, M17, M21		Sample 27
	M15, M19, M23		Sample 28
	013, 017, 021		Sample 29
	015, 019, 023		Sample 30
SNP Assay 2	A13, A17, A21	Negative	NTC

Your Assign screen should look like this:

Set up the run method


Click **Run Method** to access the Run Method screen. Set the thermal profile under the Graphical View tab. Enter:

- Reaction Volume Per Well: 10µl
- Thermal Profile

Stage	Step	Ramp rate	Temperature	Time
Pre-Read Stage	Step 1	1.6 °C/s	60 °C	30 seconds
Hold Stage	Step 1	1.6 °C/s	95°C	10 minutes

Stage	Step	Ramp rate	Temperature	Time
PCR Stage	Step 1	1.6 °C/s	95°C	15 seconds
 Number of Cycles: 40 (default) 	Step 2	1.6 °C/s	60°C	1 minute
 Enable AutoDelta: Unchecked (default) 				
 Starting Cycle: Disabled when Enable AutoDelta is unchecked 				
Post-Read Stage	Step 1	1.6 °C/s	60°C	30 seconds

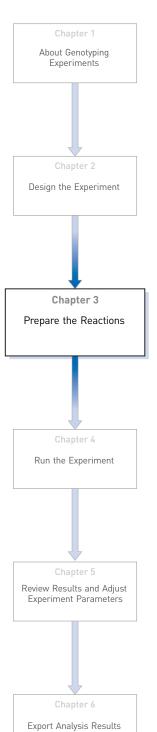
Your Run Method screen should look like this:

Order materials for the experiment

The recommended materials are:

- MicroAmp® Optical 384-Well Reaction Plate
- MicroAmp® Optical Adhesive Film
- TaqMan® Genotyping Master Mix (PN 4371355)

Your Materials List screen should look like this:



For more information

For more information on	Refer to	Part number
Consumables	Chapter 1 in Booklet 1, Getting Started with ViiA [™] 7 System Experiments	4441434
	Appendix A in Booklet 7, ViiA [™] 7 System Experiments - Appendixes	
Data collection	Chapter 1 in Booklet 1, Getting Started with ViiA [™] 7 System Experiments	4441434
Amplification efficiency	Amplification Efficiency of TaqMan® Gene Expression Assays Application Note	127AP05-03
Using Alternative Setup	Chapter 2 in Booklet 1, <i>Getting Started with</i> ViiA [™] 7 <i>System Experiments</i>	4441434

Prepare the Reactions

This chapter explains how to prepare the PCR reactions for the Genotyping example experiment.

This chapter covers:

Assemble required materials	24
Prepare the sample dilutions	24
Prepare the reaction mix ("cocktail mix")	24
Prepare the reaction plate	25
■ Tips for preparing reactions for your own experiments	27
For more information	27

Assemble required materials

- Items listed in Booklet 1, *Getting Started with ViiA*[™] 7 *System Experiments*
- Samples Sample 1 Sample 30
- Example experiment reaction mix components:
 - TaqMan® Genotyping Master Mix (2X)
 - SNP 1 Assay Mix (20X)
 - SNP 2 Assay Mix (20X)

Prepare the sample dilutions

For the example experiment, two targets are assigned to 45 wells each. Each well contains 20 ng of Coriell DNA diluted from $100 \text{ ng/}\mu\text{L}$ of stock.

To prepare the sample dilutions:

- 1. Label a separate microcentrifuge tube for each sample to be diluted.
- **2.** Add 5µL of sample stock to each empty tube.
- 3. Add $45\mu L$ of sterile water (diluent) to each tube, such that each working stock tube has a final concentration of $10 \text{ ng}/\mu L$
- **4.** Vortex each diluted sample for 3 to 5 seconds, then centrifuge the tubes briefly.
- **5.** Place the diluted samples on ice until you prepare the reaction plate.

Prepare the reaction mix ("cocktail mix")

- 1. Label an appropriately sized tube for each reaction mix:
 - SNP 1 Reaction Mix
 - SNP 2 Reaction Mix
- **2.** For SNP Assay 1, prepare a cocktail by adding the required volumes of each component to the SNP 1 reaction tube, as detailed below.

	Reaction volume			
Reaction component	Per we	ell (µL)	45 Reactions + 10% excess (µL)	
	Dry	Wet	Dry	Wet
TaqMan [®] Genotyping Master Mix (2X)	10.0	10.0	500.0	500.0
SNP Assay Mix (20X)	1.0	1.0	50.0	50.0
H ₂ O, DNase-free	9.0	7.0	450.0	350.0
Total Reaction Mix Volume	20.00	18	1000.0	900.0

- **3.** Gently pipette the reaction mix up and down, then cap the tube.
- **4.** Centrifuge the tube briefly.
- **5.** Place the reaction mixes on ice until you prepare the reaction plate.
- **6.** Repeat step 2 through 5 for the SNP 2 assay. **Note:** Do not add the sample at this time.

Prepare the reaction plate

Example experiment reaction plate components

The reaction plate for the Genotyping example experiment contains:

- A MicroAmp® Optical 384-Well Reaction Plate
- Reaction volume: 10 µL/well
- 90 Unknown wells 🛄

The reaction plate for the example experiment looks like this:

To prepare the reaction plate: dried gDNA

- 1. Pipette $2.0 \mu L$ of the appropriate sample (20 ng of purified genomic DNA) into each well of the reaction plate.
 - All wells belonging to the same Genotyping assay must contain approximately the same quantity of sample or control.
 - **Note:** While preparing the reaction plate for your own Genotyping experiment, add between 1 and 20 ng of purified DNA per reaction.
- **2.** Dry down the samples by evaporation at room temperature in a dark, ampliconfree location. (Cover the reaction plate with a lint-free tissue while drying.)
- 3. Transfer 20 µL of reaction mix to each well.

IMPORTANT! Make sure that no cross-contamination occurs from well to well.

- **4.** Seal the reaction plate with adhesive film.
- **5.** Vortex the reaction plate for 3 to 5 sec.
- **6.** Briefly centrifuge the reaction plate.
- 7. Confirm that the liquid is at the bottom of each well of the reaction plate. If not, centrifuge the plate again at a higher speed and for a longer period of time.

To prepare the reaction plate: wet gDNA

- 1. Add 2 μ L of DNA to the appropriate wells.
- **2.** Add 2 μ L of water to wells containing the NTCs.
- **3.** Transfer 18 μL of reaction mix to the appropriate wells.
- **4.** Seal the reaction plate with optical adhesive film.
- **5.** Vortex the reaction plate for 3 to 5 seconds, then briefly centrifuge it.
- **6.** Centrifuge the reaction plate briefly.
- 7. Until you are ready to perform the run, place the reaction plate at 4 °C, in the

3

Tips for preparing reactions for your own experiments

Tips for preparing samples

When you prepare the samples for your own experiment:

- Use DNAse-free water to dilute the samples.
- Use the same quantity of DNA per well for each experiment.

Tips for preparing the reaction mix

When you prepare the reaction mix for your own experiment, make sure you prepare the reactions for each SNP separately.

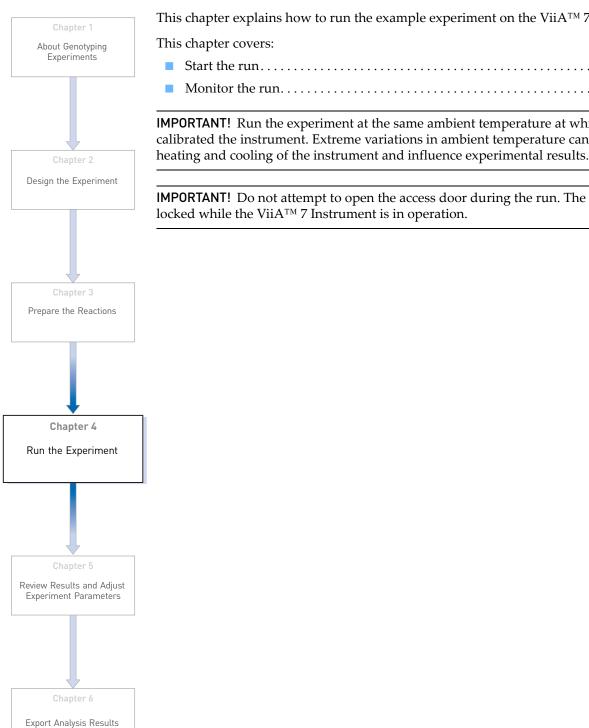
Prior to use:

- Mix the master mix thoroughly by swirling the bottle.
- Resuspend the assay mix by vortexing, then centrifuge the tube briefly.
- Thaw frozen samples by placing them on ice. When thawed, resuspend the samples by vortexing, then centrifuge the tubes briefly.

Tips for preparing the reaction plate

When you prepare the reaction plate for your own experiment:

- Make sure the reaction locations match the plate layout in the ViiATM 7 Software.
- Load 1 to 20 ng of purified genomic DNA per reaction
- All wells belonging to the same Genotyping assay must contain approximately the same quantity of sample or control.
- Multiple assays may be run on one reaction plate, but must be analyzed separately.


For more information

For more information on	Refer to	Part number
Assigning the reaction plate components	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> ™ 7 System Experiments	4441434
Sealing the reaction plate	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> ™ 7 System Experiments	4441434

Chapter 3 Prepare the Reactions For more information

Run the Experiment

This chapter explains how to run the example experiment on the $ViiA^{TM}$ 7 Instrument. This chapter covers:

- **IMPORTANT!** Run the experiment at the same ambient temperature at which you calibrated the instrument. Extreme variations in ambient temperature can affect the

IMPORTANT! Do not attempt to open the access door during the run. The door is locked while the ViiATM 7 Instrument is in operation.

Chapter 4 Run the Experiment Start the run

Start the run

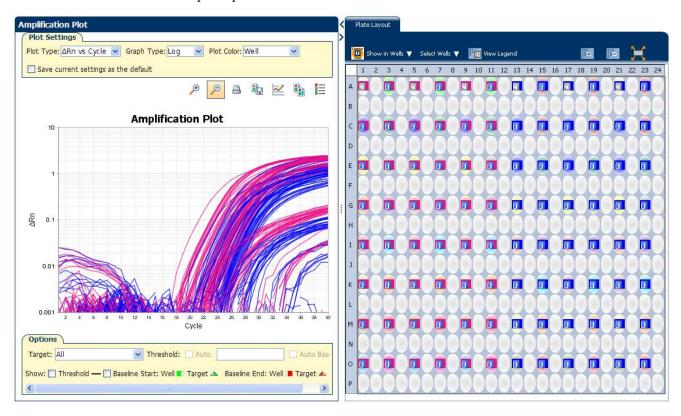
- 1. Open the Genotyping example file that you created using instructions in Chapter 2.
- **2.** Load the reaction plate into the instrument.
- **3.** Start the run.

Note: To collect real-time data during a run, click the button on the Run Method screen in the Experiment Setup menu.

Monitor the run

Monitor the example experiment run:

- From the ViiATM 7 Software using the Run screen, while the experiment is in progress.
- From the Instrument Console of the ViiATM 7 Software (to monitor an experiment started from another computer or from the ViiATM 7 Instrument touchscreen).
- From the ViiATM 7 Instrument touchscreen.


From the Instrument Console of the ViiA™ 7 Software

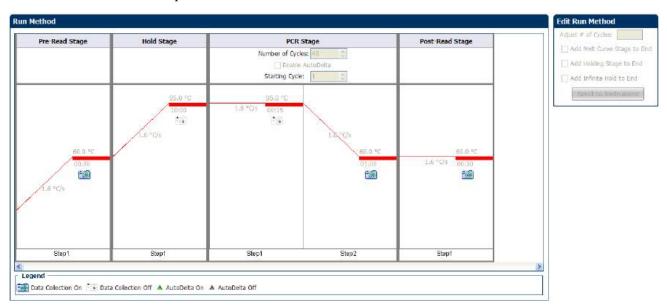
- 1. In the Instrument Console screen, select the instrument icon.
- **2.** Click **Manage Instrument** or double-click on the instrument icon.
- **3.** On the Manage Instrument screen, click **Monitor Running Instrument** to access the Run screen.

View the Amplification Plot You can view the progress of the run in real time. During the run, periodically view all the three plots available from the Vii A^{TM} 7 Software for potential problems.

Click **Amplification Plot** from the Run Experiment Menu, select the Plate Layout tab, then select the wells to view.

The figure below shows the Amplification Plot screen as it appears at the end of the example experiment.

View the Temperature Plot Click **Temperature Plot** from the Run Experiment Menu.


The figure below shows the Temperature Plot screen as it appears during the example experiment.

Note: The sample temperature displayed in the Current Temperatures group is a calculated value.

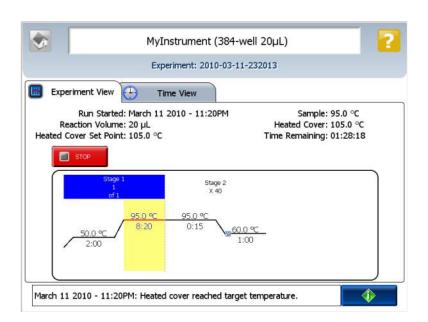
View the Run Method Click **Run Method** from the Run Experiment Menu.

The figure below shows the Run Method screen as it appears in the example experiment.

View run data

Click View Run Data from the Run Experiment Menu.

The figure below shows the View Run Data screen as it appears in the example experiment.



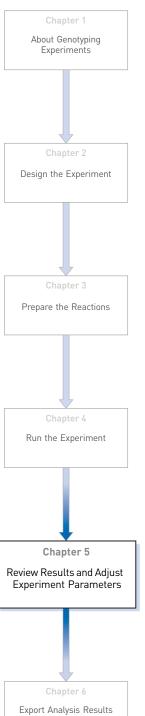
From the ViiA™ 7 Instrument touchscreen

You can also view the progress of the run from the touchscreen of the Vii A^{TM} 7 Instrument.

The Run Method screen on the ViiATM 7 Instrument touchscreen looks like this:

Experiment View

Chapter 4 Run the Experiment Monitor the run


Time View

34

Review Results and Adjust Experiment Parameters

In Section 5.1 of this chapter you review the analyzed data using several of the analysis screens and publish the data. Section 5.2 of this chapter walks you through the process of modifying experiment parameters to troubleshoot problems with experiment results before rerunning an experiment.

This chapter covers:

Section 5.1 Review Results	37
Analyze the example experiment.	37
■ View clusters in the Allelic Discrimination Plot	37
Confirm setup accuracy using Plate Layout.	40
Assess amplification results using the Amplification Plot	43
■ Identify well problems using the Well Table	46
Confirm accurate dye signal using the Multicomponent Plot	49
■ Determine signal accuracy using the Raw Data Plot 5	51
Review the flags in the QC Summary	52
For more information.	54
Section 5.2 Adjust parameters for re-analysis of your own experiments	55
Adjust analysis settings	55
For more information	60

Section 5.1 Review Results

Analyze the example experiment

- 1. Open the example experiment file that you ran in Chapter 4.
- Click Analyze. The software analyzes the data using the default analysis settings.Note: You can also access the experiment to analyze from the Home screen.

View clusters in the Allelic Discrimination Plot

The Allelic Discrimination Plot contrasts the normalized reporter dye fluorescence (Rn) for the allele-specific probes of the SNP assay.

View the allelic discrimination plot to identify:

then all wells in the plate layout are selected.

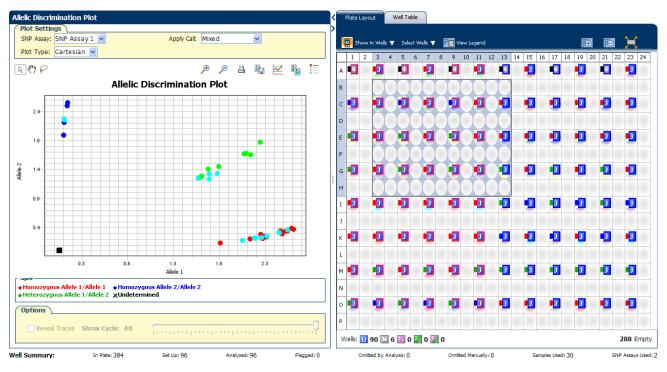
- Clusters for the three possible genotypes (Allele 1 homozygous, Allele 2 homozygous, and Allele 1/2 heterozygous).
- A cluster for the negative controls.

To view and assess the allelic discrimination plot

- 1. From the Experiment menu pane, select **Analysis Allelic Discrimination Plot**.
- Click the Plate Layout tab, then click any empty well to select it.
 Note: In the Allelic Discrimination Plot, the software highlights all wells that are selected in the Plate Layout tab. If the plot displays a single color for all wells,
- **3.** In the allelic discrimination plot, select **SNP Assay 1** from the SNP Assay menu, then enable Autocaller.

The Allelic Discrimination Plot displays allele symbols for each sample evaluated for the selected SNP. The samples are grouped on the plot as follows:

Genotype	Symbol	Location
Homozygous for Allele 1 of the selected SNP assay.	(red)	X-axis of the plot
Homozygous for Allele 2 of the selected SNP assay.	(blue)	Y-axis of the plot
Heterozygous for both alleles of the selected SNP assay (Allele 1 and Allele 2).	(green)	Midway between the homozygote clusters


Genotype	Symbol	Location
A negative control.	■ (black)	Bottom-left corner of the plot
Undetermined.	× (black)	Anywhere on plot

Note: If the Autocaller is not enabled, the Allelic Discrimination Plot displays a crossmark (X – Undetermined) for each sample.

4. Review each cluster in the plot:

- **a.** Click and drag a box around the cluster to select the associated wells in the plate layout and well table.
- b. Confirm that the expected wells are selected in the well table.
 For example, if you select the cluster at the bottom-left corner of the plot, only the negative controls should be selected. The presence of an unknown among the negative controls may indicate that the sample failed to amplify.
- **c.** Repeat steps 4a and 4b for all other clusters in the plot.
- **d.** The table below describes the elements of the Allelic Discrimination Plot.

Element	Description
SNP Assay drop- down menu	Determines the SNP assay data that the ViiA™ 7 Software displays in the plot.
Plot Type drop- down menu	Determines the type of plot (Cartesian or Polar) that the ViiA™ 7 Software uses to display the data.
Apply Call drop- down menu	When a datapoint is selected, this menu allows you to assign an allele call to the datapoint within the scatterplot.
Toolbar	Contains tools for manipulating the scatterplot: •
Legend	Explains the symbols in the scatterplot.
Options	The Reveal Traces option allows you to trace the clusters throughout the PCR process. This option is not activated for the example experiment. To activate the feature, see "Adjust analysis settings" on page 56.

The Allelic Discrimination plot for the example experiment looks like this:

Troubleshoot clustering on the Allelic Discrimination Plot

Do all controls have the correct genotype? In the example experiment and in your own experiments, confirm that data points cluster as expected.

Clustering in positive controls

- 1. From the well table, select the wells containing a positive control to highlight the corresponding data points (symbols) in the Allelic Discrimination Plot.
- **2.** Check that the data points for the positive controls cluster along the expected axis of the plot. For example, if you select the Positive Control Allele 1/Allele 1, then the controls should cluster along the X-axis.
- **3.** Repeat steps 1 and 2 for the wells containing the other positive controls.

Failed amplification in the unknown samples

- 1. Select the data points of the cluster in the lower left corner of the Allelic Discrimination Plot to select the corresponding wells in the well table.
- **2.** Check that the selected wells in the well table are negative controls, and not unknown samples.

Samples clustered with negative controls

Samples that clustered with the negative controls may:

- Contain no DNA
- Contain PCR inhibitors
- Be homozygous for a sequence deletion

Confirm the results of these samples by retesting them.

Are outliers present?

If the Allelic Discrimination Plot contains clusters other than the three representative genotype clusters (heterozygous, homozygous allele 1, and homozygous allele 2), then those can be classified as outliers.

Confirm the results of the associated samples by retesting them.

Note: The results displays are synchronized. For example, selecting a well in the plate layout selects the corresponding data in the well table and Allelic Discrimination Plot.

Confirm setup accuracy using Plate Layout

Review the experiment results in the Plate Layout. The plate layout displays the assay-specific setup and analysis properties for the experiment in a well format corresponding to the type of reaction plate used for the run.

Example experiment plate layout values

For the example experiment, confirm that the ViiATM 7 Software called:

- 54 samples as Allele 1 homozygous ()
- 12 samples as Allele 2 homozygous ()
- 24 samples as heterozygous ()
- 0 samples as undetermined (X)

Confirm that no wells of the reaction plate triggered QC flags (\triangle). The example experiment does not display any flags.

View the layout

- 1. Click the 〈 icon beside the Allelic Discrimination Plot to maximize the plate layout.
- 2. Click Show in Wells, then select or deselect a parameter that you want the wells to display. Repeat this step until the plate layout contains all of the desired parameters.

Parameter	Description
Sample Name	The name of the sample applied to the well.

Parameter	Description
Task	The task assigned to the well:
	U – Unknown
	Negative Control
	- Positive Control - Allele 1
	2 - Positive Control - Allele 2
	Positive Control - Allele 1/2
SNP Assay Name	The name of the SNP evaluated by the well.
Assay ID	The Assay ID number of the SNP evaluated by the well.
Allele 1 / Allele 2	The name of the associated allele for the SNP evaluated by the well
Allele 1 Dyes / Allele 2 Dyes	The name of the reporter and quencher dyes of the associated allele for the SNP evaluated by the well
SNP Assay Color	The color of the SNP evaluated by the well.
Sample Color / Task Color	The color of the sample or task applied to the well.
Genotype Call	The allele call assigned to the sample:
	Homozygous 1/1
	Homozygous 2/2
	Heterozygous 1/2
	■ Negative Control
	X Undetermined
Flag	The number of QC flags the well triggered as listed in the symbol.

The following figure shows the plate layout of the example Genotyping experiment.

Tips for troubleshooting plate setup in your own experiment

You can adjust your view of the plate layout:

- Note the location of any samples that trigger QC flags (▲). Understanding the position of errors can aid in diagnosing any failures that may occur.
- You can select the entire reaction plate, areas of the reaction plate, or specific wells:
 - Click the upper left corner of the reaction plate to select all 384 wells.
 - Left-click the mouse and drag across the area to select it.
 - Select Sample, SNP Assay, or Task from the Select Wells menu in the Plate Layout tab to select wells of a specific type using the well-selection criteria.
- Use the (Zoom In), (Zoom Out), and (Fit Plate) buttons to magnify or compress the view of the wells shown.
- Use the ≤ arrow tabs to expand the plate layout to cover the entire screen.

Assess amplification results using the Amplification Plot

IMPORTANT! Amplification plots are not used to make SNP calls. Examine the plots to help with troubleshooting and quality control.

If you collected real-time data for your experiment, review the amplification data to further understand the flags triggered by the experiment data.

About amplification plots

The Amplification Plot screen displays amplification of all samples in the selected wells. Use the amplification plots to confirm the results of the experiment:

• Δ Rn vs. Cycle – Δ Rn is the difference in normalized fluorescence signal generated by the reporter between the pre-PCR read and the post-PCR read. This plot displays Δ_{Rn} as a function of cycle number. You can use this plot to identify and examine irregular amplification and to view threshold and baseline values for the run.

Note: Viewing the Δ Rn vs. Cycle plot is discussed in this booklet as an example of how to view the plot.

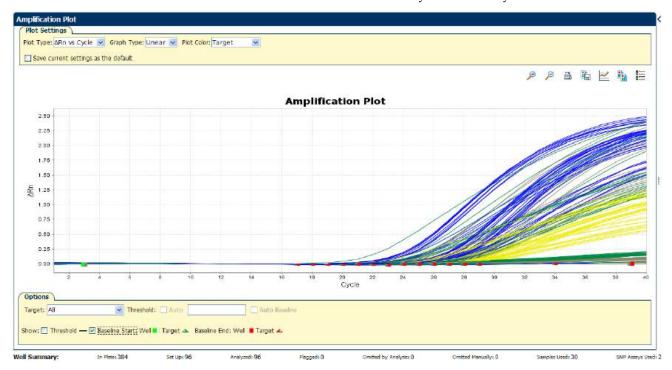
- **Rn vs. Cycle** Rn is the fluorescence signal from the reporter dye normalized to the fluorescence signal from the passive reference. This plot displays Rn as a function of cycle number. You can use this plot to identify and examine irregular amplification.
- **C**_T **vs. Well** C_T is the PCR cycle number at which the fluorescence meets the threshold in the amplification plot. This plot displays C_T as a function of well position. You can use this plot to locate outlying amplification (outliers).

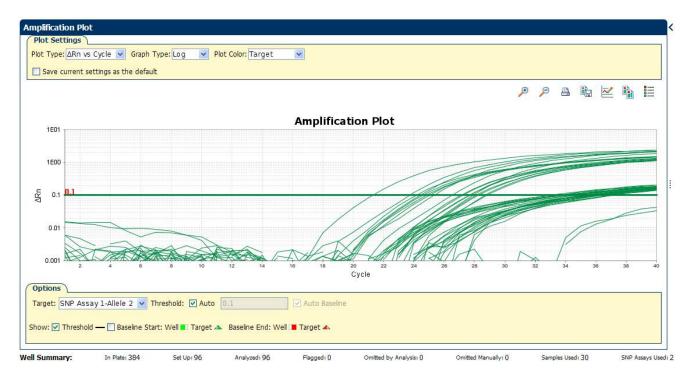
Each plot can be viewed as a linear or log10 graph type.


View the $\triangle Rn$ vs. Cycle plot

From the Experiment Menu pane, select Analysis ▶ Amplification Plot.
 Note: If no data are displayed, click Analyze.

2. Select the plot type and format:


Menu	Selection
Plot Type	ΔRn vs. Cycle
Plot Color	Target
	Check (default)
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.)	


3. View the baseline values:

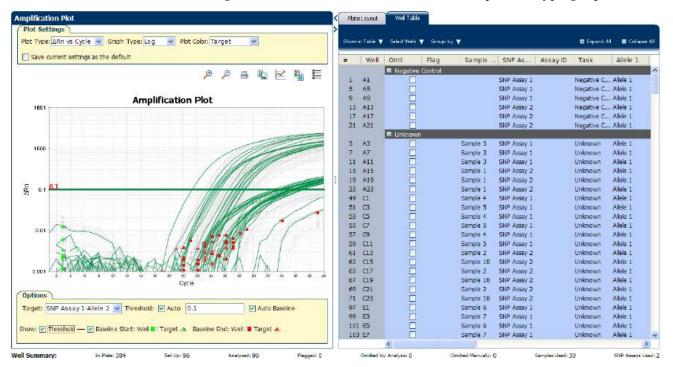
a. From the Graph Type drop-down menu, select **Linear**.

b. Select Baseline to show the start cycle and end cycle.

- **4.** View the threshold values:
 - a. From the Graph Type drop-down menu, select Log.
 - b. From the Target drop-down menu, select SNP Assay 1-Allele 2.
 - c. Select the Threshold check box to show the threshold.

Identify well problems using the Well Table

Review the details of the experiment results in the Well Table and identify any flagged wells. The Well Table displays the assay-specific setup and analysis properties for the experiment in a tabular format.


Example experiment values and flags

For the example experiment, look for wells that triggered QC flags (\triangle). The example experiment has no flags.

View the well table

- 1. Select the Well Table tab.
- 2. Click the **Flag** column header to sort the data so that the wells that triggered flags appear at the top of the table.
- **3.** Confirm the integrity of the controls:
 - **a.** From the Group By menu, select **Task** to organize the table rows by their function on the reaction plate.
 - **b.** Confirm that each of the controls do not display flags ($\frac{1}{1}$).
 - **c.** Click the icon to collapse the negative and positive controls.

The figure below shows the well table of the example Genotyping experiment.

The following table gives the names and description of the columns in the well table:

Column	Description
Well	The position of the well on the reaction plate.
Omit	A check mark indicates that the well has been removed from the analysis.
Flag	A $\stackrel{\ }{\upbel{\lambda}}$ indicates that the well triggered the number of flags listed inside the symbol.
Sample Name	The name of the sample.
SNP Assay Name	The name of the SNP assay evaluated by the well.
Assay ID	The Assay ID number of the SNP evaluated by the well.
Task	The task assigned to the well (Unknown, Negative Control, or Positive Control).
Allele 1 / 2	The name of the associated allele for the SNP evaluated by the well.
Allele 1 / 2 Dyes	The name of the reporter and quencher dyes of the associated allele for the SNP evaluated by the well.
Allele 1 / 2 _{Rn}	Normalized signal (R_n) of the reporter dye of the associated allele for the SNP evaluated by the well.
Pass Ref	The signal of the passive reference dye for the well.
Call	The allele call assigned to the sample, where possible calls are:
	Homozygous 1/1 - Homozygous for allele 1
	• O Homozygous 2/2 - Homozygous for allele 2
	Heterozygous 1/2 - Heterozygous
	Negative Control
	X Undetermined
Quality(%)	The quality value calculated for the genotype call.
Method	The method used to assign the call to the sample (Auto if assigned by the ViiA™ 7 Software, or Manual if applied by a user).
Comments	Comments entered for the associated sample well.
Allele 1 / 2 C _T	Threshold cycle $\{C_T\}$ of the sample for the associated allele for the SNP evaluated by the well.

Identify quality control (QC) problems

The Well Table displays columns for QC flags that are triggered by the experimental data. If the experiment data does not trigger a QC flag, then the ViiATM 7 Software does not display a corresponding column for the flag.

A (\triangle) in one of the following columns indicates that the associated well triggered the flag.

Flag	Description
BADROX	The well produced a passive reference signal greater than the limit defined in the analysis settings.
OFFSCALE	The well produced a level of fluorescence greater than the ViiA™ 7 System can measure.
NOSIGNAL	The well did not produce a detectable level of fluorescence.
CLUSTER#	For the SNP evaluated by the well, the number of clusters generated from the experiment data is greater than the limit defined in the analysis settings.
PCFAIL	The positive control did not produce an _{Rn} for the associated allele greater than the limit defined in the analysis settings indicating that the control may have failed to amplify.
SMCLUSTER	The number of data points in the associated cluster is less than the limit defined in the analysis settings.
AMPNC	The negative control has produced a $_{\rm Rn}$ greater than the limit defined in the analysis settings indicating possible amplification.
NOAMP	The well did not produce an _{Rn} for either allele that is greater than the limit defined in the analysis settings indicating that the well may have failed to amplify.
NOISE	The background fluorescence (noise) produced by the well is greater than the other wells on the reaction plate by a factor greater than the limit defined in the analysis settings .
SPIKE	The amplification plot for the well contains one or more data points inconsistent with the other points in the plot.
EXPFAIL	The software cannot identify the exponential region of the amplification plot for the well.
BLFAIL	The software cannot calculate the best fit baseline for the data for the well.
THOLDFAIL	The software cannot calculate a threshold for the associated well.
CTFAIL	The software cannot calculate a threshold cycle (C_T) for the associated well.

Tips for analyzing your own experiments

Confirm the integrity of positive controls

When you analyze the example experiment or your own experiment, if you are using positive controls, confirm the integrity of the positive controls:

- 1. From the Group By menu, select **Task** to organize the table rows by their function on the reaction plate
- 2. Confirm that the positive controls do not display flags (\triangle) and that their normalized reporter dye fluorescence (R_n) is appropriate for the genotype (for example, if evaluating the Positive Control Allele 1/Allele 1, you would expect to see significant increase in R_n for the Allele 1 probe and very little for the Allele 2 probe).

Adjust the Well Table

- Review the data for the Unknown samples. For each row that displays (▲) in the Flag column, note the data and the flag(s) triggered by the associated well.
- Select areas of the table or wells of a specified type by:
 - Left-clicking the mouse and dragging across the area you want to select an area of the table.
 - Selecting Sample, SNP Assay, or Task from the Select Wells menu in the
 Well Table tab to select wells of a specific type using the well-selection tool.
- Group the rows of the plate layout by selecting an option from the Group By menu. You can then collapse or expand the lists either by clicking the +/- icon next to individual lists, or by clicking Collapse All or Expand All.
- Omit a well from the analysis by selecting the **Omit** check box for that well. To include the well in the analysis, deselect the **Omit** check box.

Note: You must reanalyze the experiment each time you omit or include a well.

Confirm accurate dye signal using the Multicomponent Plot

The Multicomponent Plot screen displays the complete spectral contribution of each dye in a selected well over the duration of the PCR run.

Purpose

In the example experiment, you review the Multicomponent Plot screen for:

- ROXTM dye (passive reference)
- FAMTM dye (reporter)
- VIC® dye (reporter)
- Spikes, dips, and/or sudden changes
- Amplification in the negative control wells

View the Multicomponent Plot

- **1.** From the Experiment Menu pane, select **Analysis** ▶ **Multicomponent Plot**.
 - Note: If no data are displayed, click Analyze.
- **2.** Display the unknown wells in the plate layout to display the corresponding data in the Multicomponent Plot screen:
 - a. Click the Plate Layout tab.
 - **b.** Select one well in the plate layout; the well is shown in the Multicomponent Plot screen.

Note: If you select multiple wells, the Multicomponent Plot screen displays the data for all selected wells simultaneously.

3. From the Plot Color drop-down menu, select **Dye**.

- **4.** Click **Show a legend for the plot** (default).
 - **Note:** This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.
- **5.** Check the ROX dye signal. In the example experiment, the ROX dye signal remains constant throughout the PCR process; a constant ROX dye signal indicates typical data.
- **6.** Check the FAM dye signal. In the example experiment, the FAM dye signal increases throughout the PCR process; increase in FAM dye signal indicates normal amplification.

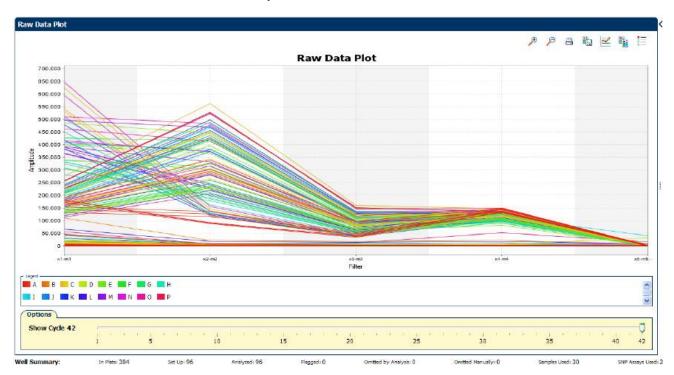
7. Select the negative control wells one at time and check for amplification. Wells with the negative control should not show amplification. The example experiment does not have negative controls.

Tips for confirming dye accuracy in your own experiment

When you analyze your own Genotyping experiment, look for:

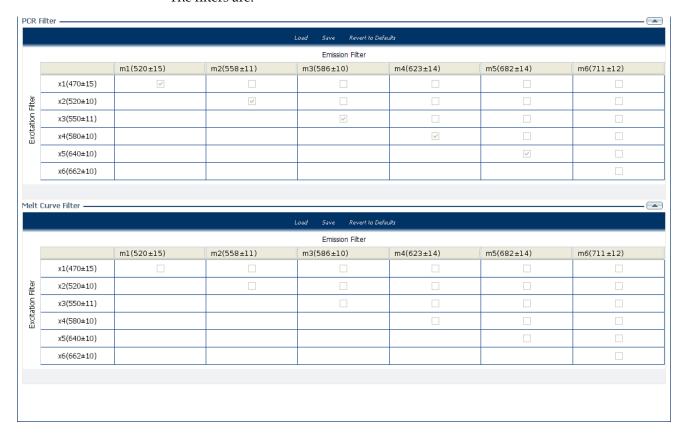
- **Passive Reference** The passive reference dye fluorescence level should remain relatively constant throughout the PCR process.
- **Reporter Dye** The reporter dye fluorescence level should display a flat region corresponding to the baseline, followed by a rapid rise in fluorescence as the amplification proceeds.
- Irregularities in the signal There should not be any spikes, dips, and/or sudden changes in the fluorescent signal.
- Negative Control wells There should not be any amplification in the negative control wells.

Determine signal accuracy using the Raw Data Plot


The Raw Data Plot screen displays the raw fluorescence signal (not normalized) for each optical filter for the selected wells during each cycle of the real-time PCR.

Purpose

In the Genotyping example experiment, you review the Raw Data Plot screen for a stable increase in signal (no abrupt changes or dips) from the appropriate filter.


View the Raw Data Plot

- From the Experiment Menu pane, select Analysis ▶ Raw Data Plot.
 Note: If no data are displayed, click Analyze.
- 2. Display all 384 wells in the Raw Data Plot screen by clicking the upper left corner of the plate layout in the Plate Layout tab.
- 3. Click Show a legend for the plot (default). The legend displays the color code for each row of the reaction plate (see the legend in the Raw Data Plot shown below).
- **4.** Click and drag the Show Cycle pointer from cycle 1 to cycle 42. In the example experiment, there is a stable increase in signal from filter 1, which corresponds to the FAM[™] dye filter.

The filters are:

Tips for determining signal accuracy in your own experiment

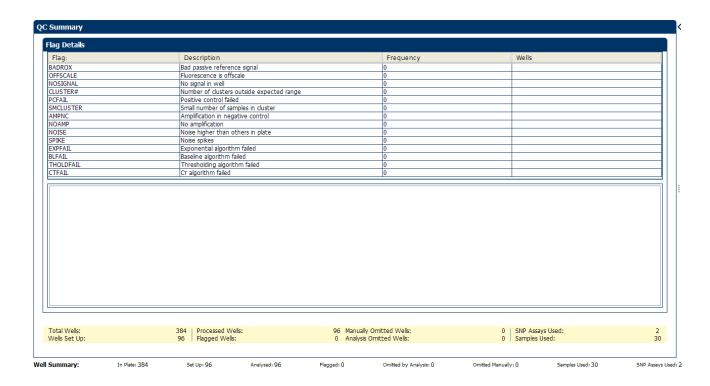
When you analyze your own Genotyping experiment, look for the following in each filter:

- Characteristic signal growth
- No abrupt changes or dips

Review the flags in the QC Summary

The QC Summary screen displays a list of the $ViiA^{TM}$ 7 Software flags, including the flag frequency and location for the open experiment.

For Genotyping experiments, flag appearance is triggered by experiment data or the assay. If a flag has been triggered by the assay, the Plate Layout does not display the \triangle icon. The flag details appear in the QC Summary.


In the example experiment, there are no flags.

View the QC Summary

- From the Experiment Menu pane, select Analysis ➤ QC Summary.
 Note: If no data are displayed, click Analyze.
- **2.** Review the Flags Summary.

Note: A 0 displayed in the Frequency column indicates that the flag does not appear in the experiment. If the frequency is >0, the flag appears somewhere in the experiment; the well position is listed in the Wells column.

- **3.** In the Flag Details table, click each flag with a frequency >0 to display detailed information about the flag.
- **4.** (*Optional*) For those flags with frequency >0, click each flag with a frequency >0 to display detailed information about the flag.

Possible flags

The flags listed below may be triggered by the experiment data or the assay.

Flag	Description	
Pre-processing flag		
OFFSCALE	Fluorescence is offscale	
Primary analysis flags		
BADROX	Bad passive reference signal	
NOAMP	No amplification	
NOISE	Noise higher than others in plate	
SPIKE	Noise spikes	
NOSIGNAL	No signal in well	
EXPFAIL	Exponential algorithm failed	
BLFAIL	Baseline algorithm failed	
THOLDFAIL	Thresholding algorithm failed	
CTFAIL	C _T algorithm failed	
Secondary analysis flags		
AMPNC	Amplification in negative control	
CLUSTER#	Number of clusters outside expected range	
PCFAIL	Positive Control failed	
SMCLUSTER#	Small number of samples in clusters	

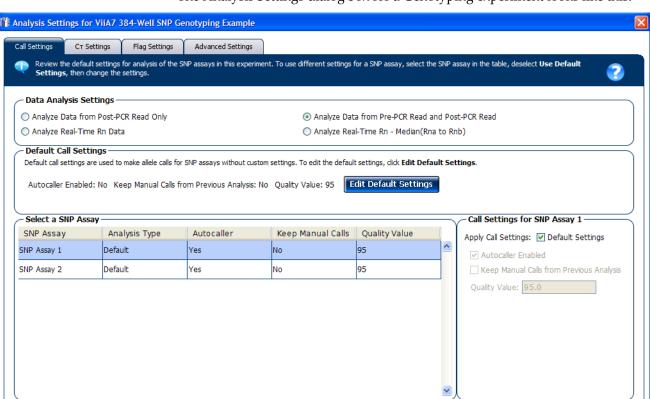
Note: When you use the Relative Threshold algorithm, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag).

For more information

For more information on	Refer to	Part number
Publishing data	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™7 System Experiments</i> .	4441434

Section 5.2 Adjust parameters for re-analysis of your own experiments

Adjust analysis settings


The Analysis Settings dialog box displays the analysis settings for the call, threshold cycle (C_T) , flags, and advanced options.

You can change the settings in the Analysis Settings dialog box, then reanalyze your experiment.

View the analysis settings

- 1. From the Experiment Menu pane, select **Analysis**.
- **2.** Click **Analysis** ▶ **Analysis Settings** to open the Analysis Settings dialog box. In the example experiment, the default analysis settings are used for each tab:
 - Call Settings
 - C_T Settings
 - Flag Settings
 - Advanced Settings

The Analysis Settings dialog box for a Genotyping experiment looks like this:

3. View and, if necessary, change the analysis (see "Adjust analysis settings" below).
Note: You can save the changes to the analysis settings to the Analysis Settings
Library for later use. For more information, see About the Analysis Settings

Revert to Default Analysis Settings

Apply Analysis Settings

Cancel

Click Apply Analysis Settings to apply the current analysis settings.
 Note: You can go back to the default analysis settings, by clicking Revert to Default Analysis Settings.

Library in Booklet 1, Getting Started with $ViiA^{TM}$ 7 System Experiments.

Adjust analysis settings

Load from Library

Call Settings

Save to Library

Use the Call Settings tab to:

- Change the default data analysis settings. You can select from:
 - Analyze data from Post-PCR Read only Select if you do not want to use data from the pre-PCR read to determine genotype calls.
 - Analyze data from Pre-PCR Read and Post-PCR Read If you included the pre-PCR read in the run, select if you want to use data from the pre-PCR read to determine genotype calls.

- Analyze Real-Time Rn Data If you included amplification in the run, select if you want to use the normalized reporter (Rn) data from the cycling stage to determine genotype calls.
- Analyze data from Rn Avg (Rna to Rnb) If you included amplification in the run, select if you want to use the subtracted median of the normalized reporter (Rn) data from the cycling stage to determine genotype calls, where Rna to Rnb refers to all the cycles from the Start Cycle Number to the End Cycle Number. The average subtraction provides improved data accuracy.

Note: To activate the Reveal Traces feature on the Allelic Discrimination Plot scree, select either **Analyze Real-Time Rn Data** or **Analyze data from Rn - Avg (Rna - Rnb)**.

- Edit the default call settings. Click Edit Default Settings, then specify the default settings:
 - Autocaller Enabled Select for the software to make genotype calls using the autocaller algorithm.
 - Keep Manual Calls from Previous Analysis If the autocaller is enabled, select to maintain manual calls after reanalysis
 - Quality Value Enter a value to use to make genotype calls. If the confidence value is less than the call setting, the call is undetermined.
- Use custom call settings for a SNP assay.
 - Select one or more SNP assays in the table, then deselect the **Default Settings** checkbox.
 - Define the custom call settings.

C_T Settings

• Data Step Selection

Use this feature to select one stage/step combination for C_T analysis when there is more than one data collection point in the run method.

Algorithm Settings

You can select the algorithm that determines the C_T values. There are two algorithms: Baseline Threshold (the default) and Relative Threshold.

The Baseline Threshold algorithm is an expression estimation algorithm that subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

The Relative Threshold algorithm lets you compare the data on a per-well or pertarget basis. This setting is ideal for analyzing a single gene across samples or a single sample across genes with no dependence on targets, thereby reducing variability. Any settings for baseline or threshold do not affect the analysis when you use the Relative Threshold algorithm.

• Default C_T Settings

Use the default C_T settings feature to calculate C_T for the alleles that do not have custom settings. To edit the default settings, click **Edit Default Settings**.

C_T Settings for Target

When you manually set the threshold and baseline, Applied Biosystems recommends:

Setting	Recommendation
Threshold	Enter a value for the threshold so that the threshold is:
	Above the background.
	Below the plateau and linear regions of the amplification curve.
	Within the exponential phase of the amplification curve.
Baseline	Select the Start Cycle and End Cycle values so that the baseline ends before significant fluorescent signal is detected.

Note: This setting is applicable only to the Baseline Threshold algorithm.

Note: Selecting Automatic Threshold implies selection of automatic setting of the baseline. However, if Automatic Threshold is deselected, then you can choose between setting the baseline either automatically or manually.

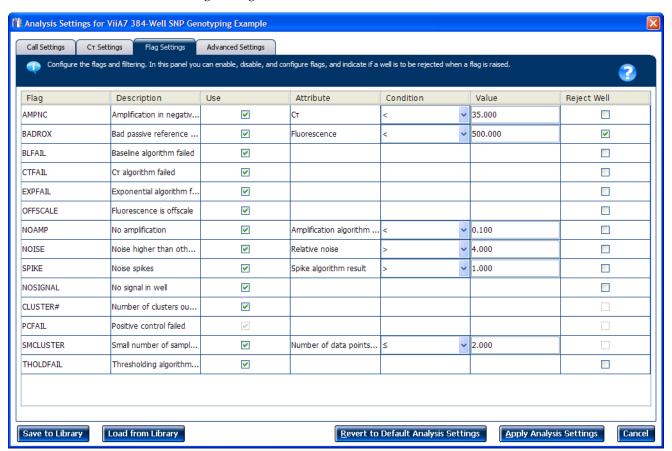
Flag Settings

Use the Flag Settings tab to:

- Adjust the sensitivity so that more wells or fewer wells are flagged.
- Change the flags that are applied by the ViiATM 7 Software.
 To adjust the flag settings:

To adjust the flag settings:

- 1. In the Use column, select the check boxes for flags to apply during analysis.
- **2.** (*Optional*) If an attribute, condition, and value are listed for a flag, specify the setting for applying the flag.


Note: If you choose to adjust the setting for applying a flag, make minor adjustments as you evaluate the appropriate setting.

3. In the Reject Well column, select the check boxes if you want the software to reject wells with the flag.

Note: After you have rejected the flagged wells, analysis results depend on factors such as the experiment type and flag type. For example, rejecting wells flagged by HIGHSD in experiments using the Standard Deviation calculations may change the result of C_T SD. For some flags, analysis results calculated before the well is rejected are maintained.

4. Click **Apply Analysis Settings** in the Analysis Settings dialog box. If the run status is complete, the data are reanalyzed.

The Flag Settings tab looks like this:

Advanced Settings

Use the Advanced Settings tab to change baseline settings well-by-well.

Note: The baseline and threshold values do not affect the analysis using the Relative Threshold setting.

To use custom baseline settings for a well-target combination:

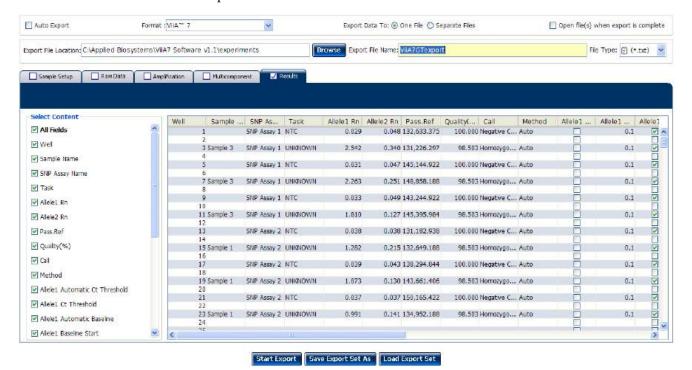
- 1. Select one or more well-target combinations in the table.
- **2.** Deselect the **Use C**_T **Settings Defined for Target** check box.
- **3.** Define the custom baseline settings:
 - For automatic baseline calculations, select the **Automatic Baseline** check box
 - To define the baseline, deselect the **Automatic Baseline** check box, then enter the baseline start cycle and baseline end cycle.

For more information

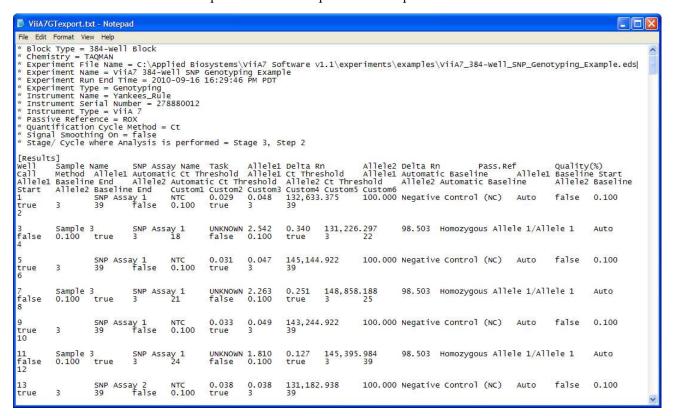
For more information on	Refer to	Part number	
Amplification efficiency	Amplification Efficiency of TaqMan [®] Gene Expression Assays Application Note.	127AP05-03	

Export Analysis Results

- 1. Open the Genotyping example experiment file that you analyzed in Chapter 5.
- 2. In the Experiment Menu, click **Export.**


Note: To export data automatically after analysis, select the **Auto Export** check box during experiment setup or before running the experiment. Auto export is unchecked for the example experiment.

- 3. Select ViiATM7 Format.
- **4.** Complete the Export dialog box as shown below:


Field or Selection	Entry
Select Data to export/ Select Content	Results
Export Data To	One File
Export File Name	ViiA7GTexport
File Type	*.txt
Export File Location	<drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments</drive>

Your Export screen should look like this:

Your exported file when opened in Notepad should look like this:

Numerics	C
5' Nuclease Assay 9	Call Settings tab 56
,	CLUSTER# flag 48
A	clusters
	troubleshooting 39
adjusting analysis settings 56	viewing 11, 37
adjusting parameters, re-analyzing own	cocktail mix 24
experiments 55	C_{T} settings
Advanced Settings tab 59	algorithm settings 57
Algorithm Settings	data step, selecting 57
Baseline Threshold 57	default 58
Relative Threshold 57	target 58
allele-specific probes 11, 37	C _T Settings tab 57
allelic discrimination plot	CTFAIL flag 48
troubleshooting 39	-
viewing and assessing 37	D
amplification plot	-
amplification efficiency 21, 60	data collection, about 8
assessing amplification results 43	designing experiment
reviewing baseline values 44	assigning markers and samples 17
reviewing threshold values 45 viewing 31	defining experiment properties 14
AMPNC flag 48	defining SNPs and samples 15
C	ordering materials 21
analysis results, exporting 61	setting up run method 19
analysis settings	DNAse-free water 27
Advanced Settings 55	dye accuracy
Call Settings 55	irregularities in the signal 50
C _T Settings 55 Flag Settings 55	negative control wells 50
	passive reference 50
Analyze Allelic Discrimination Plot 37	reporter dye 9, 50
	_
Amplification Plot 43 Multicomponent Plot 49	E
QC Summary 52	example experiment 11
Raw Data Plot 51	experiment properties, defining 14
Auto Export 61	experiment, starting and monitoring 29
Autocaller 37	EXPFAIL flag 48
Automatic Baseline, advanced settings 59	exporting analysis results 61
Automatic Threshold 58	T. G. J.
Automatic Threshold 38	F
_	
В	Flag Settings tab 58
BADROX flag 48, 54	flags, QC
baseline settings	AMPNC 48
end cycle 59	BADROX 48
start cycle 59	BLFAIL 48
BLFAIL flag 48	CLUSTER# 48
	CTFAIL 48
	EXPFAIL 48

NOAMP 48	outliers 40
NOISE 48	
NOSIGNAL 48	P
OFFSCALE 48	
PCFAIL 48	PCFAIL flag 48
SMCLUSTER 48	plate layout parameters 40
SPIKE 48	Allele 1 / Allele 2 41
THOLDFAIL 48	Allele 1 Dyes / Allele 2 Dyes 41
fluorescence signal 43	Assay ID 41
	confirming setup accuracy 40 Flag 41
G	Genotype Call 41
gDNA	Sample Color / Task Color 41
dried 26	Sample Name 40
wet 26	SNP Assay Color 41
genotype	SNP Assay Name 41
heterozygous 37	Task 41
homozygous 37	plates, reading and analyzing 10
genotype calls 56	Post-PCR read, analyzing data 56
genotyping experiments, about 7	preparing reactions
genotyping experiments, about 7	reaction mix 24
T.	reaction plate 25
I	required materials 24
irregular amplification 43	sample dilutions 24
	tips for your own experiments 27
M	Pre-PCR read, analyzing data 56
markers and camples assigning 17	Pre-processing flag
markers and samples, assigning 17	OFFSCALE 54
materials, ordering 21	Primary analysis flags
minor groove 9	BLFAIL 54
multicomponent plot	CTFAIL 54
confirming dye accuracy 49 tips for analyzing own experiment 50	EXPFAIL 54
viewing 49	NOISE 54
viewing 47	THOLDFAIL 54
M	primers 8
N	
NOAMP flag 48, 54	Q
NOISE flag 48	
non-specific fluorescence, minimizing 10	QC flags
normalized reporter (Rn) data 57	reviewing QC summary 52
normalized reporter dye fluorescence 37	troubleshooting 42 well table 46
NOSIGNAL flag 48, 54	Well table 40
-	D
0	R
	raw data plot
OFFSCALE flag 48	confirming signal accuracy 51
oligonucleotide probe 9	tips for analyzing own experiment 52
optical filter 51	viewing 51
ordering materials 21	reaction mix

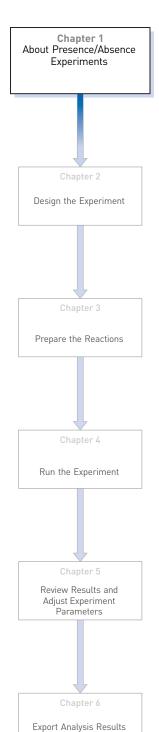
components 24	T
preparing reactions 24	TaqMan® MGB probes 9
reaction plate	TaqMan® SNP Genotyping assays 8
dried gDNA 26	temperature plot, viewing 32
preparing reactions 25	
wet gDNA 26	THOLDFAIL flag 48
reactions, assembling materials for 24	touchscreen, running the experiment from
real-time data	Experiment View 33 Time View 34
analyzing data 57	
running experiment 30	troubleshooting, plate setup 42
reporter dye 9	
reporter signal 9	W
required materials, preparing reactions 24	well table
reveal traces, call settings 57	identifying well problems 46
review results 37	tips for analyzing own experiments 48
Rna to Rnb 57	viewing 46
run	well table columns 47
monitoring 30	Allele 1 / 2 47
starting 30	Allele 1 / 2 CT 47
run method	Allele 1 / 2 Dyes 47
reaction volume per well 19	Allele 1 / 2 Rn 47
setting up 19	Assay ID 47
thermal profile 19	Call 47
viewing 33	Comments 47
Run screen	Flag 47
Amplification Plot 31	Method 47
Run Method 32	Omit 47
Temperature Plot 32	Pass Ref 47
View Run Data 33	Quality(%) 47
	Sample Name 47
S	SNP Assay Name 47
3	Task 47
sample dilutions, preparing reactions 24	Well 47
samples, defining 15	
scatterplot 38	
Secondary analysis flags	
AMPNC 54	
CLUSTER# 54	
PCFAIL 54	
SMCLUSTER# 54	
signal accuracy 51	
single nucleotide polymorphism. See SNP 8	
SMCLUSTER flag 48	
SNP 8	
SNPs and samples, defining 15	
SPIKE flag 48, 54	
spikes 50	
•	

Index

Part Number 4441434 Rev. C 12/2011 applied biosystems by Life technologies

BOOKLET 5 Running Presence/Absence Experiments

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.


Contents

CHAPTER 1	About Presence/Absence Experiments	5
	About data collection	
	End-point PCR Data	
	Setting up PCR reactions	
	IPC setup	
	No IPC, singleplex setup	
	About the instrument run	7
	About the analysis	8
	About the example experiment	8
CHAPTER 2	Design the Experiment	9
	Define the experiment properties	10
	Define targets and samples	11
	Assign targets and samples	12
	Set up the run method	13
	Order materials for the experiment	14
	For more information	14
CHAPTER 3	Prepare the Reactions	15
	Assemble required materials	16
	Prepare the reaction mix ("cocktail mix")	16
	Prepare the reaction plate	17
	For more information	19
CHAPTER 4	Run the Experiment	21
	Start the run	22
	Monitor the run	
	From the Instrument Console of the ViiA TM 7 Software	
	From the ViiA™ 7 Instrument touchscreen	

CHAPTER 5	Review Results and Adjust Experiment Parameters	27
	Section 5.1 Review Results	29
	Analyze the example experiment	29
	View the Presence/Absence Plot	29
	Purpose	
	To view and assess the Presence/Absence Plot	29
	Tips for viewing presence/absence plots in your own experiments	31
	Assess amplification results using the Amplification Plot	31
	Amplification plots available for viewing	
	Purpose	32
	View the Amplification Plot	32
	Tips for viewing amplification plots in your own experiments	34
	View the Well Table	35
	Purpose	35
	To view the Well Table	36
	Tips for analyzing your own experiments	38
	Confirm accurate dye signal using the Multicomponent Plot	38
	Purpose	38
	View the Multicomponent Plot	38
	Tips for confirming dye accuracy in your own experiment	40
	Determine signal accuracy using the Raw Data Plot	41
	Purpose	41
	View the Raw Data Plot	41
	Tips for determining signal accuracy in your own experiments	43
	Review the flags in the QC Summary	43
	View the QC Summary	43
	Possible flags	
	For more information	45
	Section 5.2 Adjust parameters for re-analysis of your own experiments	47
	Adjust analysis settings	47
	View the analysis settings	47
	Adjust analysis settings	49
	For more information	52
CHAPTER 6	Export Analysis Results	53
	Index	55

About Presence/Absence Experiments

This chapter covers:

About data collection	6
Setting up PCR reactions	6
About the instrument run	
About the analysis	8
About the example experiment	8

IMPORTANT! First-time users of the ViiATM 7 System, please read Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments* and Booklet 7, *ViiA*TM 7 *System Experiments - Appendixes* of this binder thoroughly. The booklet provides information and general instructions that are applicable to all the experiments described in this binder.

Note: For more information about any of the topics discussed in this guide, access the Help from within Applied Biosystems ViiA[™] 7 Software by pressing **F1**, clicking in the toolbar, or selecting **Help ▶ ViiA[™] 7 Software Help**.

About data collection

Presence/Absence experiments are end-point experiments that are performed to detect a target nucleic acid sequence in a sample.

You can collect the experiment data at the end of the run or continuously in real time.

End-point PCR Data

The ViiATM 7 System collects data at an end-point, that is after the process has completed.

The data collected is the normalized intensity of the reporter dye, or Rn.

Note: Some end-point experiments also include pre-PCR (data collected before the amplification process) datapoints. If so, the system calculates the delta Rn (Δ Rn) value per the following formula:

 Δ Rn = Rn (post-PCR read) – Rn (pre-PCR read), where Rn = normalized readings.

Real-Time PCR Data

The $ViiA^{TM}$ 7 System provides the option of collecting real-time data, during the PCR process.

Note: Real-time data collection is used only for troubleshooting, and not for Presence/Absence analysis.

Setting up PCR reactions

With Presence/Absence experiments, you prepare PCR reactions that contain primers and probes to amplify the target and a reagent to detect amplification of the target. You can set up the PCR reactions for the Presence/Absence experiments two different ways.

Note: The example experiment uses IPC setup for setting up the PCR reactions.

IPC setup

Use an internal positive control (IPC) to monitor the PCR progress and ensure that a negative result is not caused by failed PCR in the sample. PCR reactions contain two primer/probe sets: One to detect the unknown target (unknown target primer set and TaqMan[®] probe to detect the unknown target) and one to detect the IPC (IPC primer set and a VIC dye-labeled TaqMan[®] probe to detect the IPC template). With this setup, there are three well types:

- **Unknown-IPC wells** contain sample template and IPC template; the presence of the target is not known.
- Negative control-IPC wells contain IPC template and water or buffer instead of sample template in the PCR reaction. Only the IPC template should amplify in negative control-IPC wells because the reaction contains no sample template. Also called IPC+.

Negative control-blocked IPC wells do not contain sample template in the PCR reaction. Amplification is prevented by a blocking agent. As a result, no amplification should occur in negative control-blocked IPC wells because the reaction contains no sample template and amplification of the IPC is blocked. Negative control-blocked IPC is called *no amplification control (NAC)*. If the run method includes amplification, real-time data are plotted in an amplification plot.

No IPC, singleplex setup

Omit the IPC from your Presence/Absence experiment. PCR reactions contain one primer/probe set. PCR reactions do not contain the IPC. With this setup, there are two well types:

- Unknown wells Wells contain sample template; the presence of the target is not known.
- Negative controls Wells contain water or buffer instead of sample template.

About the instrument run

With Presence/Absence experiments, the instrument runs can include:

- **Pre-PCR read** Perform the pre-PCR read on the ViiATM 7 Software before PCR amplification to collect baseline fluorescence data.
- **Amplification** Perform amplification on the ViiATM 7 Software to collect fluorescence data during PCR amplification. If you do not include amplification in the run method, perform amplification on another instrument.
- **Post-PCR read** To determine the results for Presence/Absence experiments, perform the post-PCR read on the instrument after PCR amplification to collect endpoint fluorescence data.

Fluorescence data collected during the instrument run are stored in an experiment data file (.eds).

About the analysis

Data from the instrument run are used to determine Presence/Absence calls. Results are plotted in a Presence/Absence plot. If the experiment includes amplification, results are plotted in an amplification plot.

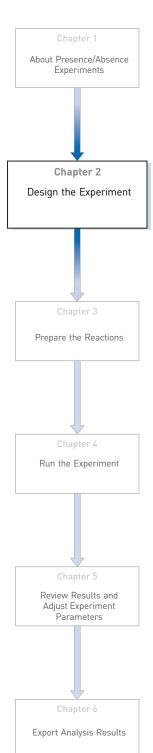
- **Pre-PCR read** If included, the data collected from the pre-PCR read can be used to normalize data collected from the post-PCR read.
- Amplification If included, the data collected from the amplification can be used to troubleshoot.
- **Post-PCR read** The data collected from the post-PCR read are used to make Presence/Absence calls:
 - Presence The target amplified above the target's threshold. The target is present in the sample.
 - Absence The target did not amplify above the target's threshold. The target is absent in the sample.
 - Unconfirmed The data collected is below the target threshold, and the intensity of IPC is below the IPC threshold.

With the IPC setup, the data collected form the post-PCR read are used to make the following calls:

- **IPC Failed** The IPC target did not amplify in the IPC wells and/or the IPC target amplified in the blocked IPC wells.
- **IPC Succeeded** The IPC target amplified in the IPC wells and the IPC target did not amplify in the blocked IPC wells.

About the example experiment

To illustrate how to perform Presence/Absence experiments, this guide leads you through the process of designing and performing an example experiment. The example experiment represents a typical setup that you can use to quickly familiarize yourself with a $ViiA^{TM}$ 7 System.


The objective of the Presence/Absence example experiment is to determine if a pathogen is present or absent in each batch of ground beef.

In the Presence/Absence example experiment:

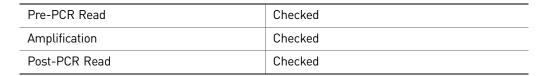
- DNA is extracted from samples using the PrepMan[®] Ultra Sample Preparation Reagent (PN 4318930). The DNA is extracted from each of the four samples of ground beef or from the bacteria found in the ground beef.
- The target is a pathogen.
- The experiment is designed for duplex PCR, where each reaction contains two
 primer/probe sets. One set detects the pathogen sequence, TGFB (primer set and
 FAM™ dye-labeled probe to detect the TGFB sequence). The other primer/probe
 set detects the IPC primer set and VIC® dye-labeled TaqMan® probe detects the
 IPC template.

Design the Experiment

This chapter explains how to design the example experiment from the Experiment Setup menu.

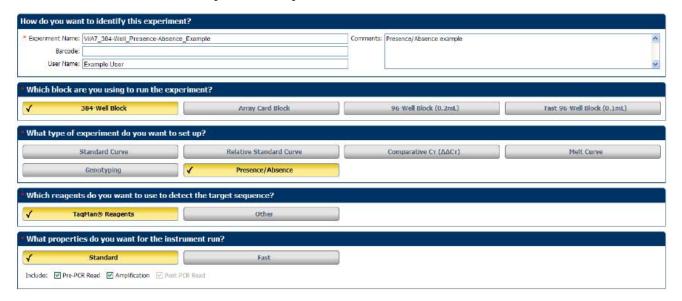
This chapter covers:

Define the experiment properties	10
Define targets and samples	11
Assign targets and samples	12
Set up the run method	13
Order materials for the experiment	14
For more information	14


Note: To automatically export the analyzed data to a specified location, select the Auto Export task from the Export screen, before running the experiment. For more information on Auto Export, refer to Chapter 1 in Booklet 1, *Getting Started with ViiA* $^{\text{TM}}$ 7 *System Experiments*.

Define the experiment properties

Click **Experiment Setup** ▶ **Experiment Properties** to create a new experiment in the ViiA[™] 7 Software. Enter:


Field or Selection	Entry
Experiment Name	ViiA7_384-Well_Presence_Absence_ Example
Barcode	Leave field empty
User Name	Example User
Comments	Presence/Absence example
Block	384-Well Block
Experiment Type	Presence/ Absence
Reagents	TaqMan [®] Reagents
Ramp speed	Standard

Select all three data-collection check boxes: Pre-PCR, Amplification, and Post-PCR collection methods:

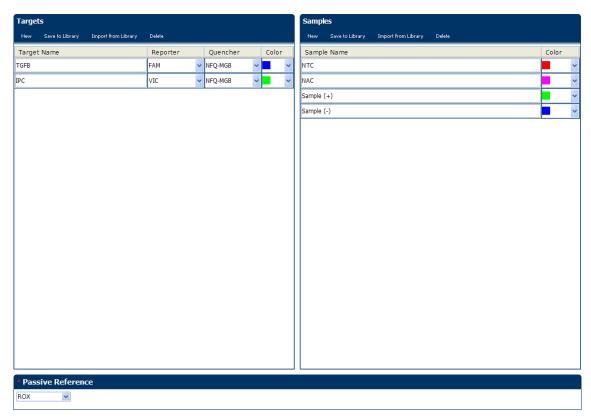
Save the experiment.

Your Experiment Properties screen should look like this:

Define targets and samples

Click **Define** to access the Define screen. Enter:

1. Targets

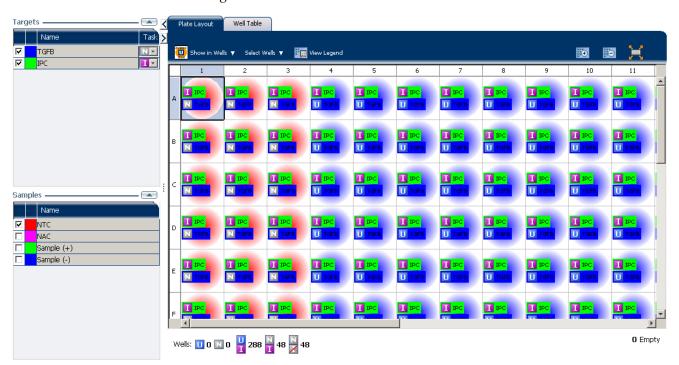

Target Name	Reporter	Quencher	Color
TGFB	FAM	NFQ-MGB	
IPC	VIC	NFQ-MGB	

2. Samples

Sample Name	Color
NTC	
NAC	
Sample (+)	
Sample (-)	

3. Dye to be used as a Passive Reference ROX

Your Define screen should look like this:

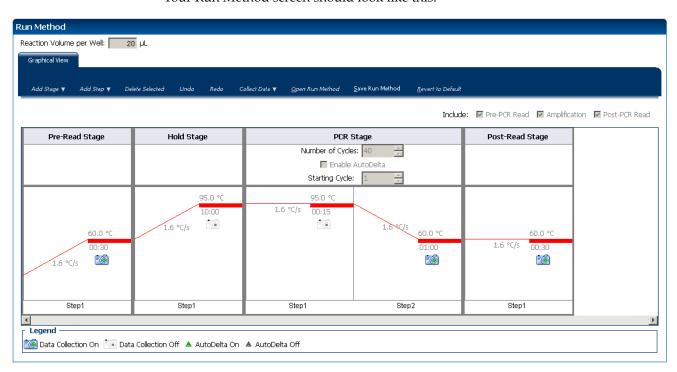


Assign targets and samples

Click **Assign** to access the Assign screen. Enter the targets and samples:

Target Name	Well Number	Task	Sample
TGFB	A1 - P3 (Columns 1 - 3)	Negative	NTC
IPC		IPC	0 1
TGFB IPC	A4 - P12 (Columns 4 - 12)	Unknown IPC	Sample (-)
TGFB IPC	A13 - P15 (Columns 13 - 15)	NTC Blocked IPC	NAC
TGFB IPC	A16 - P24 (Columns 16 - 24)	Unknown IPC	Sample (+)

Your Assign screen should look like this:

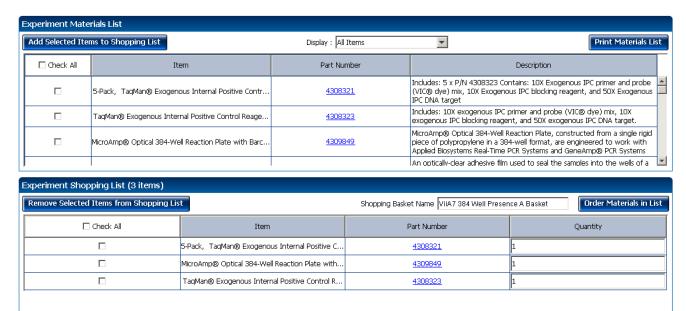

Set up the run method

Click **Run Method** to access the Run Method screen. Set the thermal profile under the Graphical View tab. Enter:

- Reaction Volume Per Well: 20µl
- Thermal Profile

Stage	Step	Ramp rate	Temperature	Time
Pre-Read Stage	Step 1	1.6 °C/s	60 °C	30 seconds
Hold Stage	Step 1	1.6 °C/s	95°C	10 minutes
PCR Stage	Step 1	1.6 °C/s	95°C	15 seconds
 Number of Cycles: 40 (default) 	Step2	1.6 °C/s	60°C	1 minute
 Enable AutoDelta: Unchecked (default) 				
 Starting Cycle: Disabled when Enable AutoDelta is unchecked 				
Post-Read Stage	Step 1	1.6 °C/s	60°C	30 seconds

Your Run Method screen should look like this:

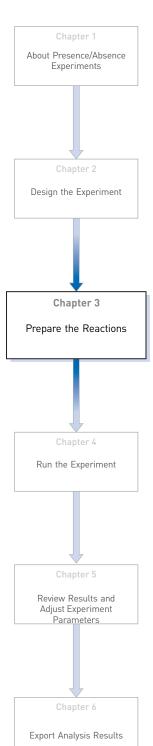


Order materials for the experiment

The recommended materials are:

- MicroAmp® Optical 384-Well Reaction Plate
- MicroAmp® Optical Adhesive Film
- TaqMan[®] Universal PCR Master Mix (2X)

Your Materials list screen should look like this:



For more information

For more information on	Refer to	Part number
Consumables	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434
	Appendix A in Booklet 7, ViiA [™] 7 System Experiments - Appendixes	
Data collection	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments	4441434
Amplification efficiency	Amplification Efficiency of TaqMan [®] Gene Expression Assays Application Note	127AP05-03
Using Alternative Setup	Chapter 2 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434

Prepare the Reactions

This chapter explains how to prepare the PCR reactions for the Presence/Absence example experiment.

This chapter covers:

Assemble required materials	16
Prepare the reaction mix ("cocktail mix")	16
Prepare the reaction plate	17
For more information	19

Assemble required materials

- Items listed in Booklet 1, *Getting Started with ViiA*[™] 7 *System Experiments*
- Samples DNA extracted from ground beef (100 ng/µL)
- Example experiment reaction mix components:
 - TaqMan[®] Universal PCR Master Mix
 - 10X IPC Mix
 - 50X IPC DNA
 - 20× Primer/ Probe Mix

Prepare the reaction mix ("cocktail mix")

For the Presence/ Absence example experiment, four cocktail mixes are used; one each for:

- Sample (+)
- Sample (-)
- NTC/ IPC+
- NAC/IPC-

The following tables list the universal assay conditions (volume and final concentration) for using the TaqMan[®] Universal PCR Master Mix for the four cocktail mixes.

Cocktail Mix	Reaction component	Volume for 1 reaction (µL)	Volume for 160 reactions (144 wells + 10% excess) (µL)
Cocktail Mix 1 for Sample (+)	TaqMan [®] Universal PCR Master Mix (2.0X)	12.50	2000.0
	10× IPC Mix	2.50	400.0
	50× IPC DNA	0.50	80.0
	20× Primer/ Probe Mix	1.25	200.0
	Water/ Buffer	5.75	920.0
	Diluted unknown 1	2.5	400
	Total reaction mix volume	25.0	4000.0
Cocktail Mix 2 for Sample (-)	TaqMan® Universal PCR Master Mix (2.0×)	12.50	2000.0
	10× IPC Mix	2.50	400.0
	50× IPC DNA	0.50	80.0
	20× Primer/ Probe Mix	1.25	200.0
	Water/ Buffer	5.75	920.0
	Diluted unknown 2	2.5	400

Cocktail Mix	Reaction component	Volume for 1 reaction (µL)	Volume for 160 reactions (144 wells + 10% excess) (µL)
Cocktail Mix 3 for NTC/ IPC+	TaqMan® Universal PCR Master Mix (2.0×)	12.50	662.5
	10× IPC Mix	2.50	132.5
	50× IPC DNA	0.50	26.5
	20× Primer/ Probe Mix	1.25	66.25
	Water/ Buffer	8.25	304.75
	Total reaction mix volume	25.0	1325.0
	TaqMan® Universal PCR Master Mix (2.0×)	12.50	662.5
Cocktail Mix 4 for NAC/ IPC-	TaqMan® Universal PCR Master Mix (2.0×)	12.50	662.5
	10× IPC Mix	2.50	132.5
	50× IPC DNA	0.50	26.5
	20× Primer/ Probe Mix	1.25	66.25
	IPC Block	2.5	132.5
	Water/ Buffer	5.75	304.75
	Total reaction mix volume	25.0	1325.0

To prepare the reaction mix for each of the four types:

- 1. Label four appropriately sized tubes for the reaction mixes: Sample (+), Sample (-), NTC, NAC.
- **2.** Add the required volumes of each cocktail mix component to the tube.
- **3.** Mix the cocktail thoroughly by gently pipetting up and down several times, then cap the tube.
- **4.** Centrifuge the tube briefly to remove air bubbles.
- Place the cocktail mix on ice until you prepare the reaction plate.
 Note: You can separately add the sample to the reaction plate, as opposed to preparing individual reaction mixes for each sample.

Prepare the reaction plate

The reaction plate for the Presence/Absence example experiment contains:

- A MicroAmp[®] Optical 384-Well Reaction Plate
- Reaction volume of 20 µL/well
- 144 Sample (+) wells **U**
- 144 Sample (-) wells <u>U</u>

Chapter 3 Prepare the Reactions Prepare the reaction plate

- 48 NTC/ IPC+ 🔟 🗾
- 48 NAC/IPC- N

The plate layout looks like this:

To prepare the reaction plate:

- 1. Add 25µL of Cocktail mix 1 to wells A16 P24.
- 2. Add 25µL of Cocktail mix 2 to wells A4 P12.
- 3. Add $25\mu L$ of Cocktail mix 3 to wells A13 P15.
- **4.** Add 25μL of Cocktail mix 4 to wells A1 P3.
- 5. Seal the reaction plate with optical adhesive film.
- **6.** Centrifuge the reaction plate briefly to remove air bubbles.
- **7.** Confirm that the liquid is at the bottom of each well of the reaction plate. If not, centrifuge the reaction plate again at a higher speed and for a longer period of time.
- **8.** Until you are ready to perform the run, place the reaction plate at $4\,^{\circ}$ C, in the dark.

For more information

For more information on	Refer to	Part number
Assigning the reaction plate components	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> ™ 7 System Experiments	4441434
Sealing the reaction plate	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434

Run the Experiment

Chapter 1 About Presence/Absence Experiments Design the Experiment Prepare the Reactions Chapter 4 Run the Experiment Review Results and Adjust Experiment Parameters

Export Analysis Results

This chapter explains how to run the example experiment on the Vii A^{TM} 7 Instrument.

This chapter covers:

IMPORTANT! Run the experiment at the same ambient temperature at which you calibrated the instrument. Extreme variations in ambient temperature can affect the heating and cooling of the instrument and influence experimental results.

IMPORTANT! Do not attempt to open the access door during the run. The door is locked while the $ViiA^{TM}$ 7 Instrument is in operation.

Chapter 4 Run the Experiment Start the run

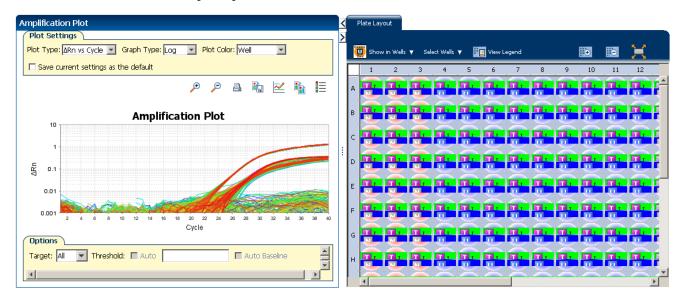
Start the run

- 1. Open the Presence/Absence example file that you created using instructions in Chapter 2.
- **2.** Load the reaction plate into the instrument.
- **3.** Start the run.

Monitor the run

Monitor the example experiment run:

- From the ViiATM 7 Software using the Run screen, while the experiment is in progress.
- From the Instrument Console of the ViiATM 7 Software (to monitor an experiment started from another computer or from the ViiATM 7 Instrument touchscreen).
- From the ViiATM 7 Instrument touchscreen.


From the Instrument Console of the ViiA™ 7 Software

- 1. In the Instrument Console screen, select the instrument icon.
- **2.** Click **Manage Instrument** or double-click on the instrument icon.
- **3.** On the Manage Instrument screen, click **Monitor Running Instrument** to access the Run screen.

View the Amplification Plot You can view the progress of the run in real time. During the run, periodically view all the three plots available from the $ViiA^{TM}$ 7 Software for potential problems.

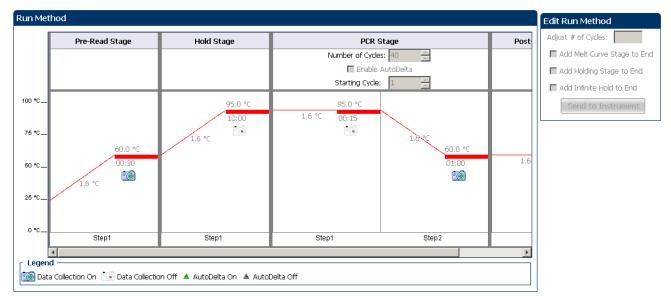
Click **Amplification Plot** from the Run Experiment Menu, select the Plate Layout tab, then select the wells to view.


The figure below shows the Amplification Plot screen as it appears at the end of the example experiment.

View the Temperature Plot

Click Temperature Plot from the Run Experiment Menu.

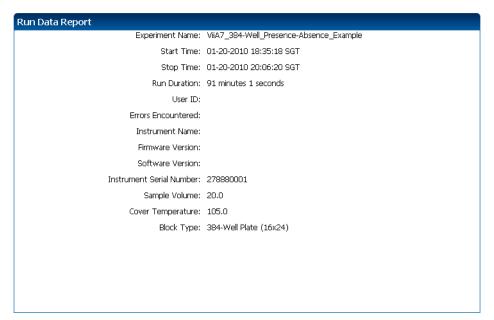
The figure below shows the Temperature Plot screen as it appears during the example experiment.



Note: The Sample temperature displayed in the Current Temperatures group is an estimated value.

View the Run Method

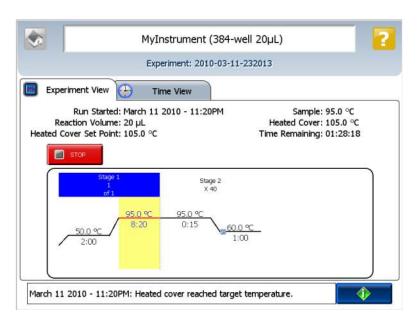
Click Run Method from the Run Experiment Menu.


The figure below shows the Run Method screen as it appears in the example experiment.

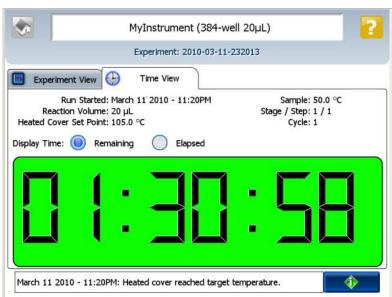
View run data

Click View Run Data from the Run Experiment Menu.

The figure below shows the View Run Data screen as it appears in the example experiment.

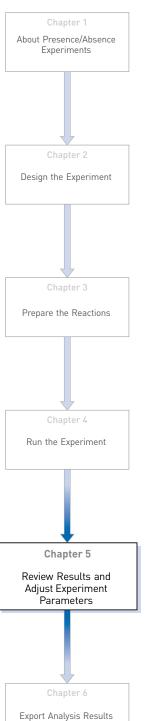


From the ViiA™ 7 Instrument touchscreen


You can also view the progress of the run from the touch screen of the Vii A^{TM} 7 Instrument.

The Run Method screen on the ViiATM 7 Instrument touchscreen looks like this:

Experiment View



Time View

Review Results and Adjust Experiment Parameters

In Section 5.1 of this chapter you review the analyzed data using several of the analysis screens and publish the data. Section 5.2 of this chapter walks you through the process of modifying experiment parameters to troubleshoot problems with experiment results before rerunning an experiment.

This chapter covers:

Section 5.1 Review Results	29
Analyze the example experiment	29
■ View the Presence/Absence Plot	29
Assess amplification results using the Amplification Plot	31
■ View the Well Table	35
■ Confirm accurate dye signal using the Multicomponent Plot	38
■ Determine signal accuracy using the Raw Data Plot	4
■ Review the flags in the QC Summary	43
For more information.	45
Section 5.2 Adjust parameters for re-analysis of your own experiments	47
Adjust analysis settings	47
For more information	52

Section 5.1 Review Results

Analyze the example experiment

- 1. Open the Presence/Absence example experiment file that you ran in Chapter 4.
- Click Analyze. The software analyzes the data using the default analysis settings.Note: You can also access the experiment to analyze from the Home screen.

View the Presence/Absence Plot

The Presence/Absence Plot displays the intensity of the fluorescence for each well position. There are four Presence/Absence plot views available:

- All Calls
- Presence calls only
- · Absence calls only
- Unconfirmed calls

For each view you can choose to:

- Show IPC
- Show Controls

Purpose

The purpose of viewing the Presence/Absence Plot for the example experiment is to confirm that:

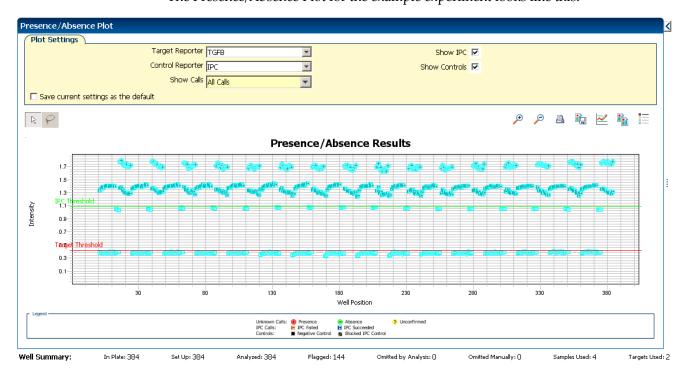
- The target is absent in samples NTC and Sample (-).
- The target is present in Sample (+).
- There are no unconfirmed wells.
- The IPC succeeded in all wells.
- There is no amplification in NAC wells.

To view and assess the Presence/Absence Plot

From the Experiment menu pane, select **Analysis** > **Presence/Absence Plot.**

Note: If no data are displayed, click **Analyze**.

1. Display all 384 wells in the Presence/Absence Plot screen by clicking the upper left corner of the plate layout in the **Plate Layout** tab.


2. Enter the Plot Settings:

Menu	Selection
Target Reporter	TGFB
Control Reporter	IPC
Show Calls	All Calls
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.)	Check (default)

- **3.** Click the **Show IPC** check box to view the fluorescence intensity of the IPC target in the Unknown-IPC wells.
- **4.** Click the **Show Controls** check box to view the fluorescence intensity of the IPC target in the Negative Control-IPC wells and the Negative Control-Blocked IPC wells.
- **5.** To view the fluorescence intensity of:
 - Presence calls
 – select Presence from the Show Calls drop-down menu.
 - Absence calls
 – select Absence from the Show Calls drop-down menu.
 - Unconfirmed calls—select Unconfirmed from the Show Calls drop-down menu.

Note: The Presence/Absence example experiment does not contain any unconfirmed calls.

The Presence/Absence Plot for the example experiment looks like this:

30

Tips for viewing presence/absence plots in your own experiments

- The IPC threshold is calculated from the Negative Control- Blocked IPC reactions.
- **The Target Threshold** is calculated from the Negative Control- IPC reactions. If the target's intensity is:
 - Above the target threshold, the call is present (regardless of the intensity of the IPC).
 - Below the target threshold, and the IPC's intensity is above the IPC threshold, the call is absent.
 - Below the target threshold, and the IPC's intensity is below the IPC threshold, the call is unconfirmed.

Target Calls:

- Presence
- Absence
- Unconfirmed

IPC Calls:

- IPC Succeeded
- IPC Failed

• Control Well Calls:

- Negative Control IPC
- Negative Control Blocked IPC

Assess amplification results using the Amplification Plot

IMPORTANT! Amplification plots are not used to make presence/absence calls. Examine the plots to help with troubleshooting and quality control.

Amplification plots available for viewing

The Amplification Plot displays amplification of all samples in the selected wells. There are three amplification plot views available:

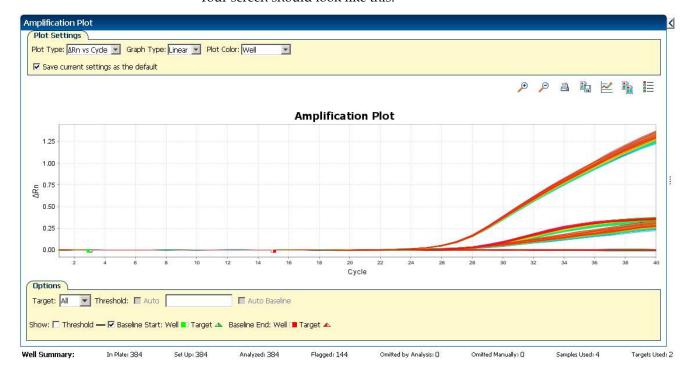
- ΔRn vs Cycle ΔRn is the difference in normalized fluorescence signal generated by the reporter between the pre-PCR read and the post-PCR read. This plot displays ΔRn as a function of cycle number. You can use this plot to identify and examine irregular amplification and to view threshold and baseline values for the run.
- **Rn vs Cycle** Rn is the fluorescence signal from the reporter dye normalized to the fluorescence signal from the passive reference. This plot displays Rn as a function of cycle number. You can use this plot to identify and examine irregular amplification.
- **C**_T **vs Well C**_T is the PCR cycle number at which the fluorescence meets the threshold in the amplification plot. This plot displays **C**_T as a function of well position. You can use this plot to locate outlying amplification (outliers).

Each plot can be viewed as a linear or log10 graph type.

Purpose

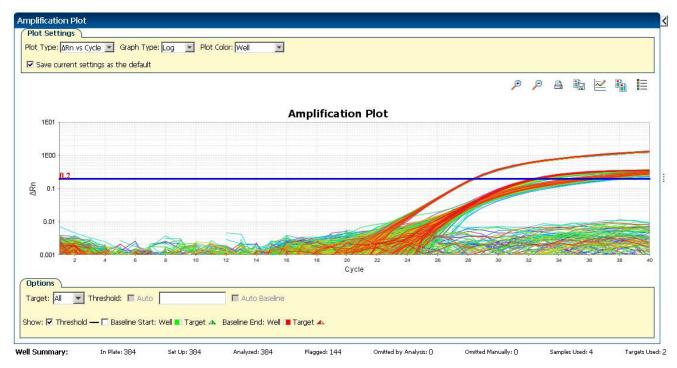
The purpose of viewing the amplification plot for the example experiment is to review the target to identify:

- Correct baseline and threshold values
- Irregular amplification
- Outliers


View the Amplification Plot

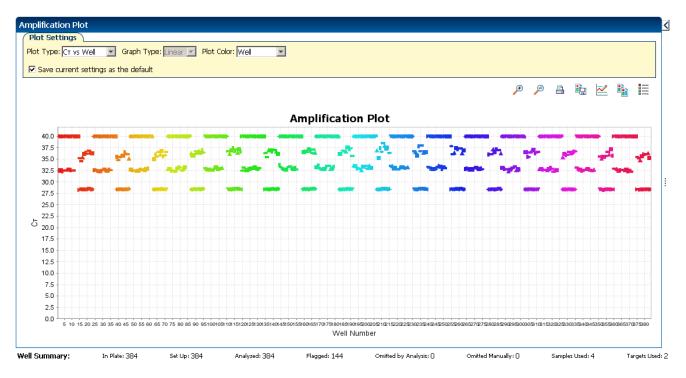
- From the Experiment menu pane, select Analysis ➤ Amplification Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display all 384 wells in the amplification plot by clicking the upper left corner of the plate layout in the Plate Layout tab.
- **3.** Expand the Plate Layout tab by clicking the left facing arrow that is left of the tab.
- **4.** In the Amplification Plot screen, enter:

Menu	Selection
Plot Type	ΔRn vs Cycle
Plot Color	Well
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.)	Check (default)

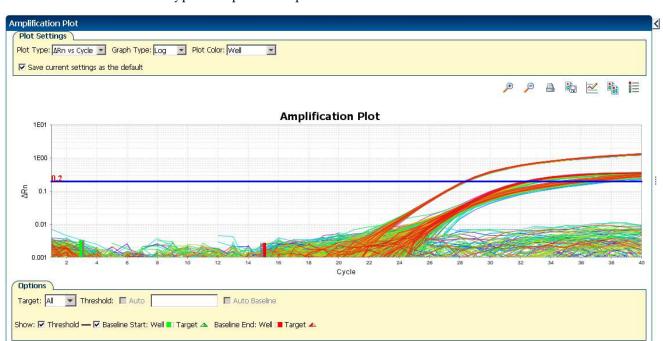

- **5.** View the baseline values:
 - **a.** From the Graph Type drop-down menu, select **Linear**.
 - **b.** Select the **Baseline** check box to show the start cycle and end cycle.
 - **c.** Verify that the baseline is set correctly: The end cycle should be set a few cycles before the cycle number where significant fluorescent signal is detected. In the example experiment, the baseline is set correctly.

Your screen should look like this:

- **6.** View the threshold values:
 - a. From the Graph Type drop-down menu, select Log.
 - **b.** Select the **Threshold** check box to show the threshold.
 - **c.** Verify that the threshold is set correctly.


Your screen should look like this:

- **7.** Locate any outliers:
 - **a.** From the Plot Type drop-down menu, select C_T vs Well.
 - **b.** Look for outliers from the amplification plot. In the example experiment, there are no outliers for IPC.


Your screen should look like this:

Tips for viewing amplification plots in your own experiments

When you analyze your own Presence/ Absence experiment, look for:

- Outliers
- A typical amplification plot The ViiA[™] 7 Software automatically calculates baseline and threshold values based on the assumption that the data exhibit a *typical* amplification plot. A typical amplification plot has four distinct sections:
 - Plateau phase
 - Linear phase
 - Exponential (geometric phase)
 - Baseline

Flagged: 144

A typical amplification plot should look like this:

IMPORTANT! Experimental error (such as contamination or pipetting errors) can produce atypical amplification curves that can result in incorrect baseline and threshold value calculations by the ViiA $^{\text{TM}}$ 7 Software. Applied Biosystems recommends that you examine the Amplification Plot screen and review the assigned baseline and threshold values for each well after analysis.

Omitted by Analysis: ()

Omitted Manually: ()

Samples Used: 4

Targets Used: 2

View the Well Table

In Plate: 384

Set Up: 384

Analyzed: 384

The well table displays results data for each well in the reaction plate, including:

- The well number, sample name, target name, task, and dyes
- The calculated values: ΔRn, ΔRn mean, and ΔRn SD
 Note: ΔRn, ΔRn mean, and ΔRn SD are calculated only when the analysis call settings specify to analyze data from the pre-PCR read and the post-PCR read.
- Target and IPC thresholds, Call, Comments
- Flags

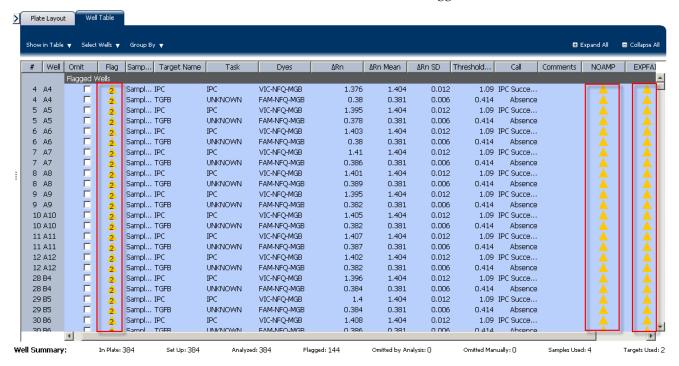
Purpose

Well Summary:

In the Presence/Absence example experiment, you review the well table for:

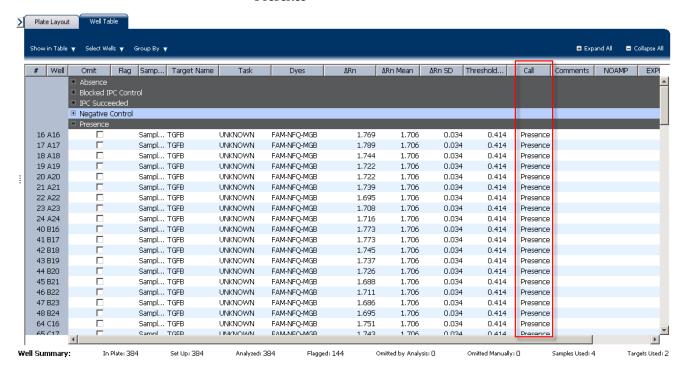
- Call
- ΔRn
- Flag

To view the Well Table

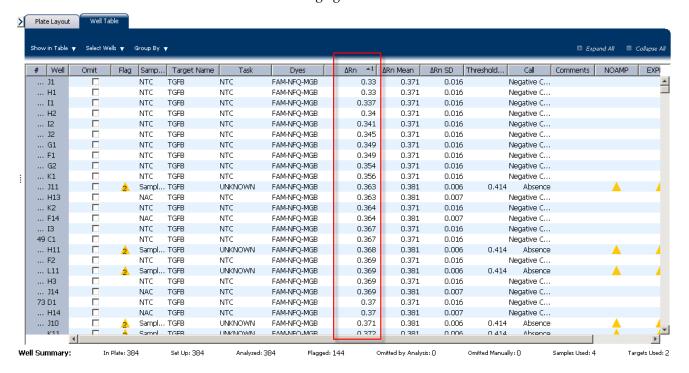

1. From the Experiment Menu pane, select **Analysis** • **Amplification Plot**, then select the **Well Table** tab.

Note: If no data are displayed, click Analyze.

2. Use the Group By drop-down menu to group wells by a specific category. For the example experiment, group the wells by flag, call, and Δ Rn value.


Note: You can select only one category at a time.

- **a.** From the Group By drop-down menu, select **Flag**:
 - 144 wells are listed under Flagged.
 - 240 wells are listed under Unflagged.



- **b.** From the Group By drop-down menu, select **Call**. Wells are listed in the order:
 - Absence
 - Blocked IPC Control
 - IPC Succeeded

- Negative Control
- Presence

c. From the Group By drop-down menu, select **None**. In the table, click the column heading Δ **Rn**. Wells are listed in order of increasing Δ Rn. Click the column heading again to reverse the sort order.

Tips for analyzing your own experiments

When you analyze your own Presence/Absence experiment, group the wells by:

- Flag –The software groups the flagged and unflagged wells. A flag indicates that the software has found an error in the flagged well. For a description of the ViiA™ 7 Software flags, see "Review the flags in the QC Summary" on page 43.
- Call The software groups the wells by call: Negative Control, Blocked-IPC, Presence, Absence, Unconfirmed, IPC Succeeded, and IPC Failed.

Confirm accurate dye signal using the Multicomponent Plot

The Multicomponent Plot screen displays the complete spectral contribution of each dye in a selected well over the duration of the PCR run.

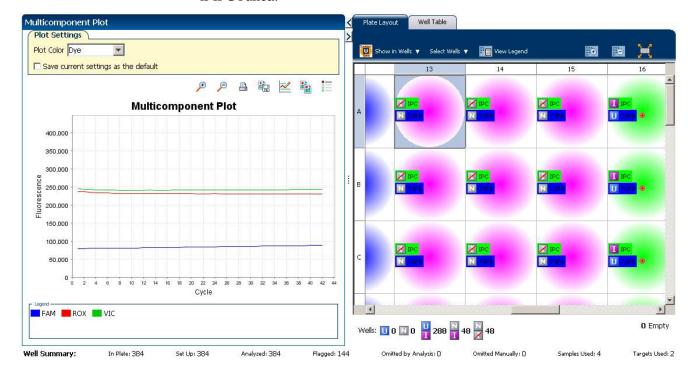
Purpose

In the Presence/Absence example experiment, you review the Multicomponent Plot screen for:

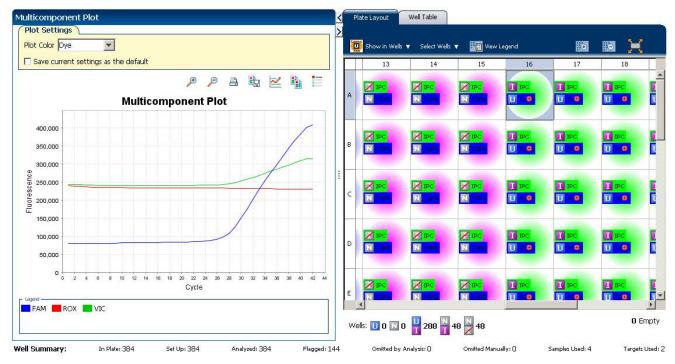
- ROXTM dye (passive reference)
- FAMTM dye (reporter)
- VIC[®] dye (reporter)
- Spikes, dips, and/or sudden changes
- Amplification in the negative control wells

View the Multicomponent Plot

- From the Experiment Menu pane, select Analysis ▶ Multicomponent Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display the wells **one at a time** in the Multicomponent Plot screen:
 - **a.** Click the **Plate Layout** tab.
 - **b.** Select one well in the plate layout; the well is shown in the Multicomponent Plot screen.

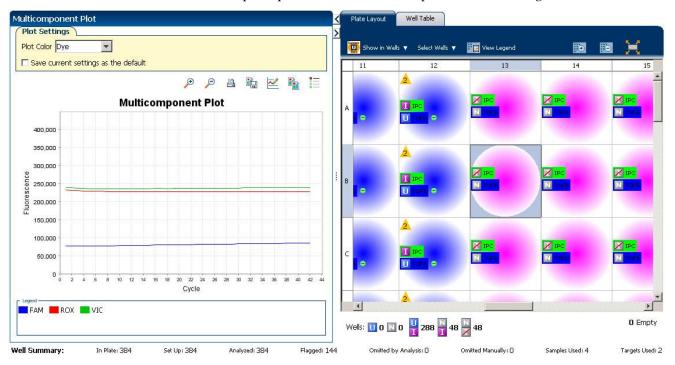

Note: If you select multiple wells, the Multicomponent Plot screen displays the data for all selected wells simultaneously.

- **3.** From the Plot Color drop-down menu, select **Dye**.
- **4.** Click **Show a legend for the plot** (default).


Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

5. Check the ROX dye signal. In the example experiment, the ROX dye signal remains constant throughout the PCR process; a constant ROX dye signal indicates typical data.

6. Check the VIC dye signal. In the example experiment the VIC dye signal should not amplify for NC-Blocked IPC wells or if the IPC call for the Unknown-IPC well is IPC Failed.



7. Check the FAM dye signal. In the example experiment, for the Sample (+), the FAM dye signal increases throughout the PCR process; increase in FAM dye signal indicates normal amplification.

8. Select the negative control (NAC) wells one at time and check for amplification. In the example experiment, there is no amplification in the negative control wells.

Tips for confirming dye accuracy in your own experiment

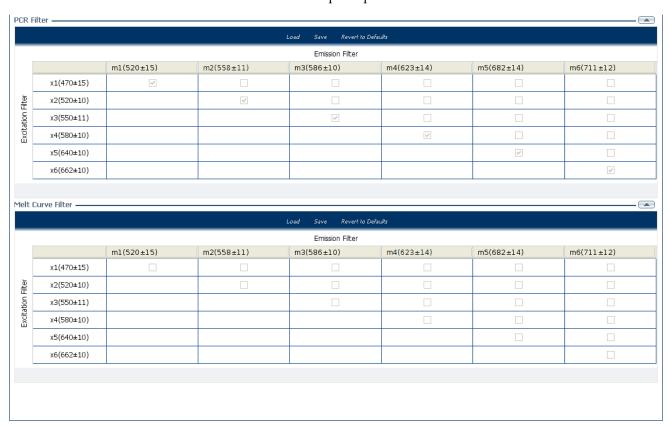
When you analyze your own Presence/Absence experiment, look for:

- **Passive reference (ROX)** The passive reference dye fluorescence level should remain relatively constant throughout the PCR process.
- **Reporter dye (FAM)** The reporter dye fluorescence level should display a flat region corresponding to the baseline. If target is present in the sample (a Presence call is made), the baseline will be followed by a rapid rise in fluorescence as the amplification proceeds.
- Irregularities in the signal There should not be any spikes, dips, and/or sudden changes in the fluorescent signal.
- **Negative control wells** There should not be any amplification in the negative control wells.

The Raw Data Plot screen displays the raw fluorescence signal (not normalized) for each optical filter for the selected wells during each cycle of the real-time PCR.

Purpose

In the Presence/Absence example experiment, review the Raw Data Plot screen for a stable increase in signal (no abrupt changes or dips) from the appropriate filter.


View the Raw Data Plot

- From the Experiment Menu pane, select Analysis ➤ Raw Data Plot.
 Note: If no data are displayed, click Analyze.
- 2. Click Show a legend for the plot (default). The legend displays the color code for each row of the reaction plate (see the legend in the Raw Data Plot shown below).
- **3.** Display all 384 wells in the Raw Data Plot screen by clicking the upper left corner of the plate layout in the Plate Layout tab.
- **4.** Select wells corresponding to a replicate group:
 - Sample (-) wells: From the Select Wells with drop-down menus, select Sample (-).
 - Sample (+) wells: From the Select Wells with drop-down menus, select Sample (+).
 - Negative control-IPC wells: Select wells A1 P1, A2 P2, and A3 P3.
 - Negative control-blocked IPC wells: Select wells A13 P13, A14 -P14, and A15 P15.

5. Click and drag the Show Cycle pointer from cycle 1 to cycle 42. In the example experiment, there is a stable increase in signal from filter 1, which corresponds to the FAMTM dye filter.

The filters used for the example experiment are:

Tips for determining signal accuracy in your own experiments

When you analyze your own Presence/ Absence experiment, look for the following in each filter:

- · Characteristic signal growth
- No abrupt changes or dips

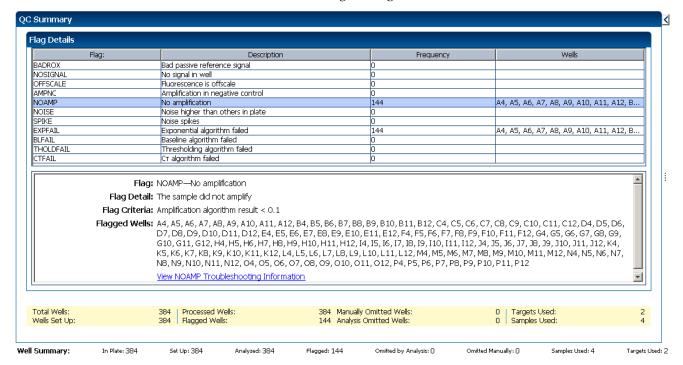
Review the flags in the QC Summary

The QC Summary screen displays a list of the ViiATM 7 Software flags, including the flag frequency and location for the open experiment. In the example experiment, 144 flags have been triggered.

Note: The flags triggered in the example experiment are seen in the Sample (-) wells. The flags, NOAMP and EXPFAIL indicate that the wells containing the Sample (-) did not amplify and that the software could not identify the exponential region of the amplification plot (as amplification did not take place). The occurrence of these flags in the example experiment is valid because it indicates the absence of the target in the sample.

View the QC Summary

- From the Experiment Menu pane, select Analysis ➤ QC Summary.
 Note: If no data are displayed, click Analyze.
- 2. Review the Flags Summary


Note: A 0 displayed in the Frequency column indicates that the flag does not appear in the experiment. If the frequency is >0, the flag appears somewhere in the experiment; the well position is listed in the Wells column.

In the example experiment, there are 144 flagged wells.

- **3.** In the Flag Details table, click each flag with a frequency >0 to display detailed information about the flag. In the example experiment:
 - The NOAMP flag appears 144 times, in the wells A4 P4, A5 P5, A6 P6, A7 P7, A8 P8, A9 P9, A10 P10, A11 P11, and A12 P12.
 - The EXPFAIL flag appears 144 times, in the same wells as the NOAMP flag, that is, A4 P4, A5 P5, A6 P6, A7 P7, A8 P8, A9 P9, A10 P10, A11 P11, and A12 P12.

4. (*Optional*) For those flags with frequency >0, click the troubleshooting link to view information on correcting the flag.

Possible flags

For Presence/Absence experiments, the flags listed below may be triggered by the experiment data.

Flag	Description	
	Pre-processing flag	
OFFSCALE	Fluorescence is offscale	
Primary analysis flags		
BADROX	Bad passive reference signal	
NOAMP	No amplification	
NOISE	Noise higher than others in plate	
SPIKE	Noise spikes	
NOSIGNAL	No signal in well	
EXPFAIL	Exponential algorithm failed	
BLFAIL	Baseline algorithm failed	
THOLDFAIL	Thresholding algorithm failed	
CTFAIL	C _T algorithm failed	

Flag	Description
Secondary analysis flags	
AMPNC	Amplification in negative control

Note: If the experiment does not include amplification, then the only flags are BADROX, NOSIGNAL, and OFFSCALE.

Note: When you use the Relative Threshold algorithm, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag).

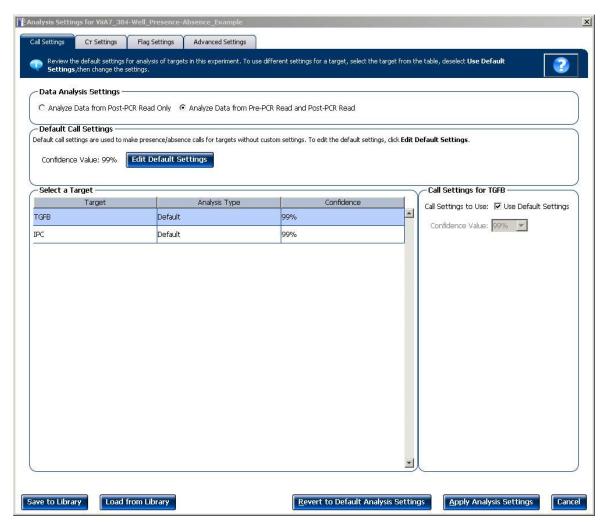
For more information

For more information on	Refer to	Part number
Publishing data	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> [™] 7 System Experiments	4441434

Chapter 5 Review Results and Adjust Experiment Parameters For more information

Section 5.2 Adjust parameters for re-analysis of your own experiments

Adjust analysis settings


The Analysis Settings dialog box displays the analysis settings for the call, threshold cycle (C_T) , flags, and advanced options.

If the default analysis settings in the ViiATM 7 Software are not suitable for your own experiment, you can change the settings in the Analysis Settings dialog box, then reanalyze your experiment.

View the analysis settings

- 1. From the Experiment Menu pane, select **Analysis**.
- **2.** Click **Analysis** ▶ **Analysis Settings** to open the Analysis Settings dialog box. In the example experiment, the default analysis settings are used for each tab:
 - Call Settings
 - C_T Settings
 - Flag Settings
 - Advanced Settings

The Analysis Settings dialog box for a Presence/Absence experiment looks like this:

3. View and, if necessary, change the analysis settings (see "Adjust analysis settings" below).

Note: You can save the changes to the analysis settings to the Analysis Settings Library for later use. For more information, see About the Analysis Settings Library in Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments*.

4. Click **Apply Analysis Settings** to apply the current analysis settings.

Note: You can go back to the default analysis settings, by clicking **Revert to Default Analysis Settings**.

Adjust analysis settings

Call Settings

Use the Call Settings tab to:

- Change the default data analysis settings. You can select from:
 - Analyze data from Post-PCR Read only
 - Analyze data from Pre-PCR Read and Post-PCR Read
- Edit the default call settings.
 - Click Edit Default Settings, then select the confidence value to use to make presence/absence calls. If the confidence value is less than the call setting, the call is unconfirmed.
 - Click Save Changes.
- Use custom call settings for a target.
 - Select one or more targets in the table, then deselect the **Default Settings** checkbox.
 - Select the confidence value to use to make presence/absence calls for the selected target(s).

C_T Settings

Data Step Selection

Use this feature to select one stage/step combination for C_T analysis when there is more than one data collection point in the run method.

Algorithm Settings

You can select the algorithm that determines the C_T values. There are two algorithms: Baseline Threshold (the default) and Relative Threshold.

The Baseline Threshold algorithm is an expression estimation algorithm that subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

The Relative Threshold algorithm lets you compare the data on a per-well or pertarget basis. This setting is ideal for analyzing a single gene across samples or a single sample across genes with no dependence on targets, thereby reducing variability. Any settings for baseline or threshold do not affect the analysis when you use the Relative Threshold algorithm.

• Default C_T Settings

Use the default C_T settings feature to calculate C_T for the targets that do not have custom settings. To edit the default settings, click **Edit Default Settings**.

• C_T Settings for Target

When you manually set the threshold and baseline, Applied Biosystems recommends:

Setting	Recommendation
Threshold	Enter a value for the threshold so that the threshold is:
	Above the background.
	Below the plateau and linear regions of the amplification curve.
	Within the exponential phase of the amplification curve.
Baseline	Select the Start Cycle and End Cycle values so that the baseline ends before significant fluorescent signal is detected.

Note: This setting is applicable only to the Baseline Threshold algorithm.

Note: Selecting Automatic Threshold implies selection of automatic setting of the baseline. However, if Automatic Threshold is deselected, then you can choose between setting the baseline either automatically or manually.

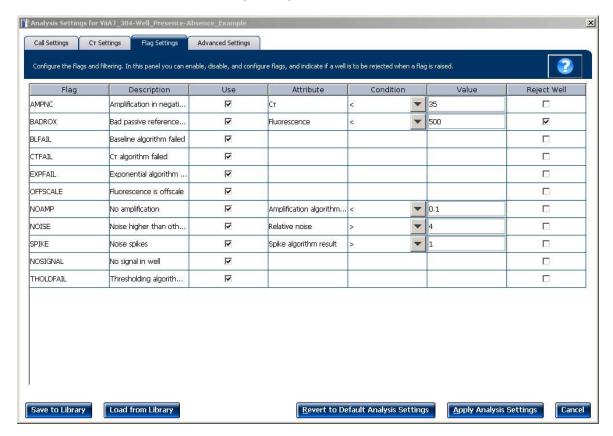
Flag Settings

Use the Flag Settings tab to:

- Adjust the sensitivity so that more wells or fewer wells are flagged.
- Change the flags that are applied by the ViiA™ 7 Software.

To adjust the flag settings:

- 1. In the Use column, select the check boxes for flags to apply during analysis.
- **2.** (*Optional*) If an attribute, condition, and value are listed for a flag, specify the setting for applying the flag.


Note: If you choose to adjust the setting for applying a flag, make minor adjustments as you evaluate the appropriate setting.

3. In the Reject Well column, select the check boxes if you want the software to reject wells with the flag.

Note: After you have rejected the flagged wells, analysis results depend on factors such as the experiment type and flag type. For example, rejecting wells flagged by HIGHSD in experiments using the Standard Deviation calculations may change the result of $C_T \, \text{SD}$. For some flags, analysis results calculated before the well is rejected are maintained.

4. Click **Apply Analysis Settings** in the Analysis Settings dialog box. If the run status is complete, the data are reanalyzed.

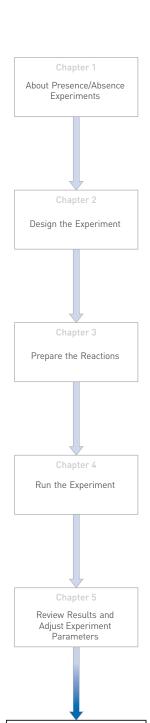
The Flag Settings tab looks like this:

Advanced Settings

Use the Advanced Settings tab to change baseline settings well-by-well.

Note: The baseline and threshold values do not affect the analysis using the Relative Threshold setting.

To use custom baseline settings for a well-target combination:

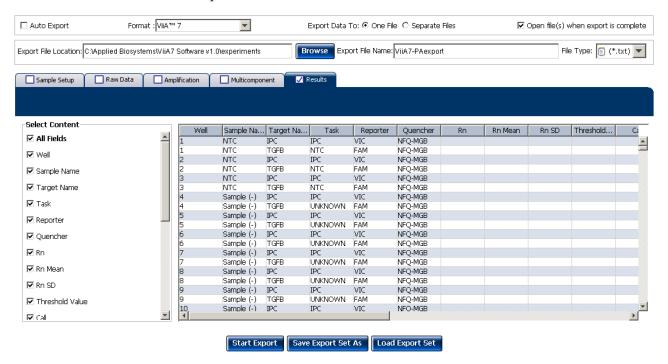

- 1. Select one or more well-target combinations in the table.
- **2.** Deselect the **Use** C_T **Settings Defined for Target** check box.
- **3.** Define the custom baseline settings:
 - For automatic baseline calculations, select the Automatic Baseline check box.
 - To define the baseline, deselect the **Automatic Baseline** check box, then enter the baseline start cycle and baseline end cycle.

For more information

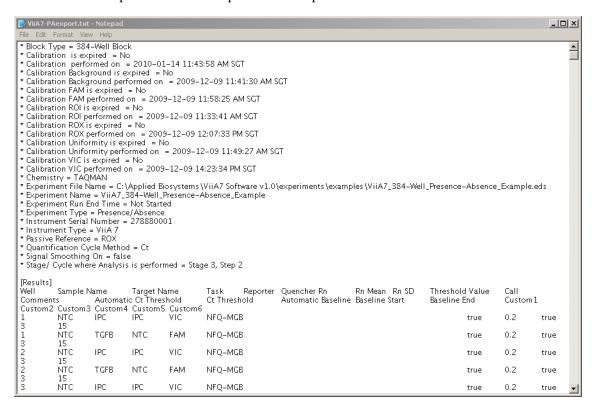
For more information on	Refer to	Part number
Amplification efficiency	Amplification Efficiency of TaqMan [®] Gene Expression Assays Application Note.	127AP05-03

Export Analysis Results

Chapter 6
Export Analysis Results


- 1. Open the Presence/Absence example experiment file that you analyzed in Chapter 5.
- 2. In the Experiment Menu, click Export.

Note: To export data automatically after analysis, select the **Auto Export** check box during experiment setup or before running the experiment. Auto export is unchecked for the example experiment.


- 3. Select ViiATM7 Format.
- **4.** Complete the Export dialog box as shown below:

Field or Selection	Entry
Select Data to export/ Select Content	Results
Export Data To	One File
Export File Name	ViiA7PAexport
File Type	*.txt
Export File Location	<pre><drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments</drive></pre>

Your Export screen should look like this:

Your exported file when opened in Notepad should look like this:

Index

A	C
adjusting analysis settings 47	Call Settings tab 49
adjusting parameters, re-analyzing own	cocktail mix 16, 17
experiments 47	C _T settings 49
Advanced settings tab 51	algorithm settings 49
Algorithm Settings	data step, selecting 49
Baseline Threshold 49	default 49
Relative Threshold 49	tab 49
ambient temperature 21	target 49
amplification 7	cycle number 32
amplification plot	
amplification efficiency 14, 52	D
assessing amplification results 31	_
reviewing baseline values 32	data collection, type
reviewing outliers 34	end-point PCR data 6
reviewing threshold values 33	real-time PCR data 6
tips for analyzing own experiment 34	designing experiment
viewing 23, 32	assigning targets and samples 12
AMPNC flag 45	defining experiment properties 10
analysis data	defining targets and samples 11 ordering materials 14
amplification 8	setting up run method 13
post-PCR read 8	~ -
pre-PCR read 8	dye accuracy irregularities in the signal 40
analysis results, export 53	negative control wells 40
analysis settings 47	passive reference 40
Advanced Settings 47	reporter dye 40
Call Settings 47	reporter taye 10
C _T Settings 47	E
Flag Settings 47	E
Analyze	end-point PCR data 6
Amplification Plot 31	example experiment 8
Multicomponent Plot 38	experiment properties, defining 10
Presence/Absence Plot 29	EXPFAIL flag 44
QC Summary 43	Export 53
Raw Data Plot 41	•
Well Table 35	F
Auto Export 53	
Automatic Baseline, advanced settings 51	Flag Settings tab 50
Automatic Threshold 50	flags, QC
	AMPNC 45
В	BADROX 44
	BLFAIL 44
BADROX flag 44	CTFAIL 44
BLFAIL flag 44	EXPFAIL 44
Blocked IPC 31	NOAMP 44
Blocked IPC Control 36	NOISE 44 NOSIGNAL 44
	INCADICALNIAL 44

OFFSCALE 44	post-PCR read 7, 31
SPIKE 44	post-PCR read analysis data
THOLDFAIL 44	absence 8
	presence 8
I .	unconfirmed 8
	preparing reactions
instrument run	reaction mix 16
amplification 7	reaction plate 17
post-PCR read 7	required materials 16
pre-PCR read 7	pre-PCR read 7, 31
IPC	Pre-processing flag
failed 8	OFFSCALE 44
succeeded 8	presence/absence calls 31
IPC setup, well type	Presence/Absence experiments
negative control-blocked IPC wells 7	about 5
negative control-IPC wells 6	analysis, about 8
unknown-IPC wells 6	instrument run, about 7
irregular amplification 31	overview 6
	PCR reactions, setting up 6
M	presence/absence plot
	tips for viewing own experiment 31
multicomponent plot	viewing and assessing 29
confirming dye signal 38	views, absence calls only 29
tips for analyzing own experiment 40	views, all calls 29
viewing 38	views, presence calls only 29
	views, presence cans only 29
N	•
negative control-blocked IPC wells 7	Primary analysis flags BADROX 44
negative control-IPC wells 6	BLFAIL 44
negative controls 7	CTFAIL 44
no IPC 7	EXPFAIL 44
well type, negative controls 7	NOAMP 44
well type, unknown wells 7	NOISE 44
NOAMP flag 44	NOSIGNAL 44
NOISE flag 44	SPIKE 44
NOSIGNAL flag 44	THOLDFAIL 44
NOSIGNAL mag 44	1110 22 1112 11
0	Q
0	
OFFSCALE flag 44	QC Summary, reviewing flags 43
ordering materials 14	
outliers 31	R
	raw data plot
P	raw data plot determining signal accuracy 41
	tips for analyzing own experiment 40
passive reference 31	viewing 41
PCR reactions, type	reaction mix
IPC setup 6	
no IPC, singleplex setup 7	components 16
	preparing reactions 16

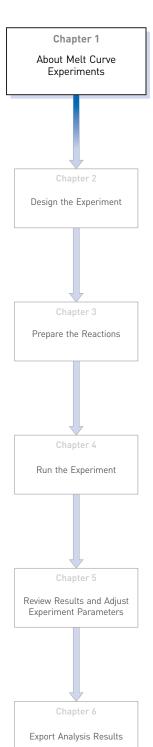
reactions, assembling materials for 16	unknown-IPC wells 6	
real-time PCR data 6		
replicate group 41	W well table	
review results 29		
run	tips for analyzing own experiment 3	
monitoring 22	viewing 36	
starting 22	viewing ou	
run method		
reaction volume per well 13		
setting up 13		
thermal profile 13		
viewing 24		
Run screen		
Amplification Plot 23		
Run Method 24		
Temperature Plot 23		
View Run Data 24		
S		
samples, defining 11		
Secondary analysis flags		
AMPNC 45		
setting up PCR reactions 6		
show controls 29		
show IPC 29		
singleplex setup 7		
SPIKE flag 44		
Т		
targets and samples, assigning 12		
targets, defining 11		
temperature plot, viewing 23		
THOLDFAIL flag 44		
tips for viewing presence/absence plot		
control well calls 31		
IPC calls 31		
IPC threshold 31		
target calls 31		
target threshold 31		
touchscreen, running the experiment from		
Experiment View 25		
Time View 25		
U		
unconfirmed calls 30		
unknown wells 7		

Index

Part Number 4441434 Rev. C 12/2011 applied biosystems by Life technologies

BOOKLET 6 Running Melt Curve Experiments

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.


Contents

CHAPTER 1	About Melt Curve Experiments	5
	Overview	6
	About the Melt Curve reactions	6
	About the example experiment	6
CHAPTER 2	Design the Experiment	7
	Define the experiment properties	8
	Define targets and samples	9
	Assign targets and samples	10
	Set up the run method	10
	Set the thermal profile	
	Edit the ramp increment	
	Order materials for the experiment	
	For more information	13
CHAPTER 3	Prepare the Reactions	15
	Assemble required materials	16
	Prepare the sample dilutions	16
	Prepare the reaction mix ("cocktail mix")	
	Procedure	
	Calculations	
	Prepare the reaction plate	
	For more information	18
CHAPTER 4	Run the Experiment	19
	Start the run	20
	Monitor the run	20
	From the Instrument Console of the ViiA™ 7 Software	
	From the ViiA™ 7 Instrument touchscreen	23

CHAPTER 5	Review Results and Adjust Experiment Parameters			
	Section 5.1 Review Results	27		
	Analyze the example experiment	27		
	View the Melt Curve Plot	27		
	Purpose			
	To view and assess the Melt Curve			
	Tips for viewing melt curves in your own experiments			
	Identify well problems using the Well Table	29		
	Example experiment values and flags			
	View the well table			
	Tips for viewing well tables your own experiments	30		
	Confirm accurate dye signal using the Multicomponent Plot	31		
	Purpose			
	View the Multicomponent Plot			
	Tips for confirming dye accuracy in your own experiment			
	Determine signal accuracy using the Raw Data Plot	32		
	About the example experiment	32		
	View the Raw Data Plot			
	Tips for determining signal accuracy in your own experiments	34		
	Review the flags in the QC Summary	34		
	View the QC Summary	34		
	Possible flags	35		
	For more information	36		
	Section 5.2 Adjust parameters for re-analysis of your own experiments	37		
	Adjust analysis settings	37		
	View the analysis settings			
	Adjust analysis settings	39		
	For more information	42		
CHAPTER 6	Export Analysis Results	. 43		
	Index	. 45		

About Melt Curve Experiments

This chapter covers:

Overview	(
About the Melt Curve reactions	(
About the example experiment	6

IMPORTANT! First-time users of the ViiATM 7 System, please read Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments* and Booklet 7, *ViiA*TM 7 *System Experiments - Appendixes* of this binder thoroughly. The booklet provides information and general instructions that are applicable to all the experiments described in this binder.

Note: For more information about any of the topics discussed in this guide, access the Help from within Applied Biosystems ViiA[™] 7 Software by pressing **F1**, clicking in the toolbar, or selecting **Help ▶ ViiA[™] 7 Software Help**.

Overview

A Melt Curve, also known as dissociation curve, is a plot of data collected during the Melt Curve stage of an experiment. Melt Curve experiments are performed to determine the melting temperature (Tm) of a target nucleic acid sequence or to identify nonspecific PCR amplification.

Melting temperature (Tm) is the temperature at which 50% of the target DNA is double-stranded and 50% is dissociated into single-stranded DNA.

The melting temperature and non-specific PCR amplification can be identified as peaks in the melt curve stage of an experiment.

About the Melt Curve reactions

With Melt Curve experiments, the reactions consist of completed PCR reactions that contain amplified products and SYBR® Green dye to detect double-stranded DNA.

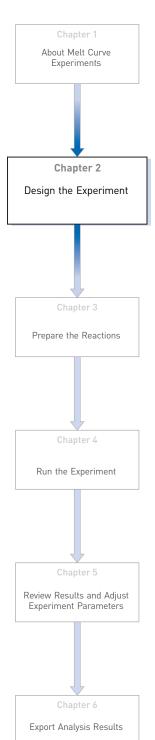
The $ViiA^{TM}$ 7 Software detects the number of fluorescence peaks, determines the melting temperature (Tm) for each peak, and plots the results in a melt curve.

The fluorescence data collected during the ViiATM 7 Instrument run are stored in an experiment data file (*.eds).

There are two types of reactions in a Melt Curve experiment:

- **Unknowns** Wells containing PCR product with unknown melting temperature(s).
- **Negative controls** Wells containing buffer or water instead of sample. Negative controls should contain no double-stranded DNA.

About the example experiment


To illustrate how to perform Melt Curve experiments, this guide leads you through the process of designing and performing an example experiment. The example experiment represents a typical setup that you can use to quickly familiarize yourself with a $ViiA^{TM}$ 7 System.

The objective of the example Melt Curve experiment is to investigate the melting temperature of Target 1, and verify that no extraneous peaks appear. The SYBR Green reagent is used to detect the melting temperature stage.

Note: The example experiment performs a melt curve analysis on PCR products from a PCR performed on the Vii A^{TM} 7 System or on another thermal cycler.

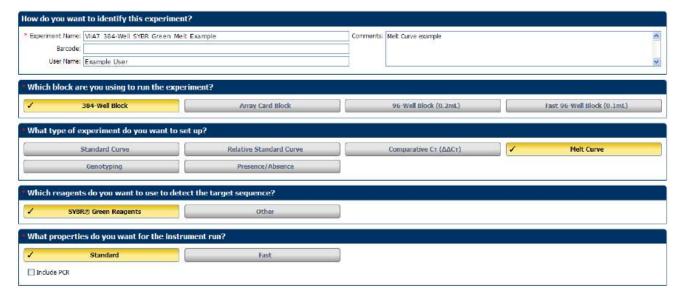
Design the Experiment

This chapter explains how to design the example experiment from the Experiment Setup menu.

This chapter covers:

Define the experiment properties	8
Define targets and samples	9
Assign targets and samples	10
Set up the run method	10
Order materials for the experiment	12
For more information	13

Note: To automatically export the analyzed data to a specified location, select the Auto Export task from the Export screen, before running the experiment. For more information on Auto Export, refer to Chapter 1 in Booklet 1, *Getting Started with ViiA* $^{\text{TM}}$ 7 *System Experiments*.


Define the experiment properties

Click **Experiment Setup** ▶ **Experiment Properties** to create a new experiment in the ViiA[™] 7 Software. Enter:

Field or Selection	Entry
Experiment Name	ViiA7_384-Well_SYBR_Green_Melt_Example
Barcode	Leave field empty
User Name	Example User
Comments	Melt Curve example
Block	384-Well Block
Experiment Type	Melt Curve
Reagents	SYBR® Green Reagents
Ramp speed	Standard
Include PCR	Unchecked

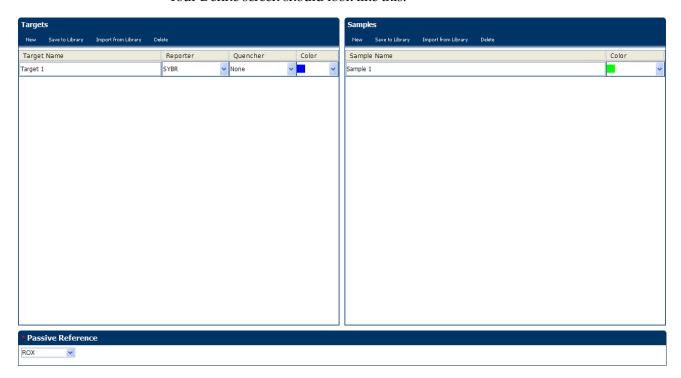
Save the experiment.

Your Experiment Properties screen should look like this:

Define targets and samples

Click **Define** to access the Define screen. Enter:

1. Targets

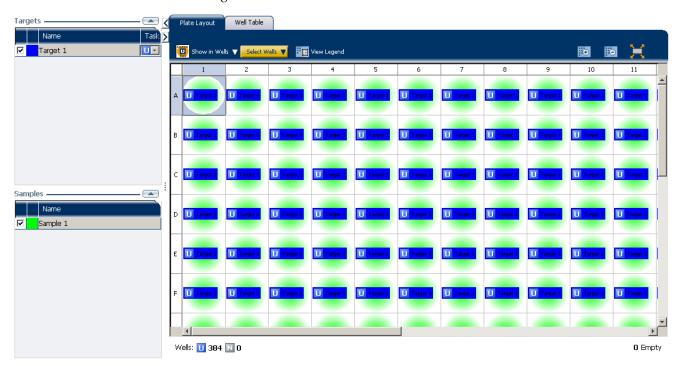

Target Name	Reporter	Quencher	Color
Target 1	SYBR	None	

2. Samples

Sample Name	Color
Sample 1	

3. Dye to be used as a Passive Reference ROX

Your Define screen should look like this:



Assign targets and samples

Click **Assign** to access the Assign screen. Enter the targets and samples:

Target Name	Sample	Well Number	Task
SYBR	Sample 1	A1 - P24 (Columns 1 -24)	Unknown

Your Assign screen should look like this:

Set up the run method

Set the thermal profile

Click **Run Method** to access the Run Method screen. Set the thermal profile under the Graphical View tab. Enter:

- Reaction Volume Per Well: 20µl
- Thermal Profile

Stage	Step	Ramp rate	Temperature	Time
Melt Curve Stage	Step 1	1.6 °C/s	95°C	15 seconds
	Step 2	1.6 °C/s	60°C	1 minute
	Step 3 (Dissociation)	0.05 °C/s	95°C	15 seconds

Edit the ramp increment

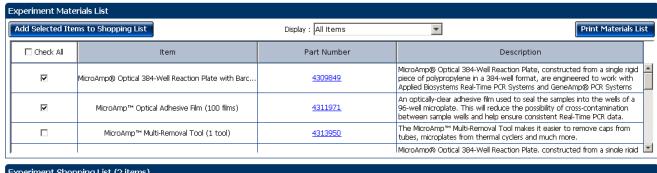
Edit the ramp increment for a melt curve (dissociation) step.

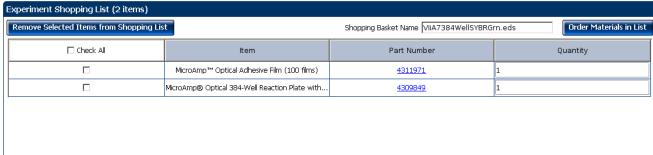
- 1. Select a melt curve ramp increment method:
 - **Step and Hold** Increases or decreases the ramp temperature in 0.1 °C increments over the time (duration) for the melt curve ramp.
 - Continuous (default) Increases or decreases the ramp rate in 0.005 °C per second increments.
- **2.** If you selected the Step and Hold ramp increment method, edit the melt curve ramp time:
 - To increase or decrease the time in 1-minute or 1-second increments, click the Step and Hold field, select the minutes or seconds, then use the up or down arrow keys or click the up or down buttons in the field until you reach the desired time.
 - To enter the desired time, click the **Step and Hold** field, select the minutes or seconds, then enter the desired time.
- **3.** Edit the melt curve ramp increment:
 - To increase or decrease the ramp increment, click the melt curve (dissociation) ramp increment in the thermal profile, then use the up or down arrow keys or click the up or down buttons in the field until you reach the desired value.
 - To enter the desired ramp increment, click the melt curve (dissociation) ramp increment in the thermal profile, select the value in the field, then enter the desired value.

Note: To view the maximum and minimum allowed values, place the cursor over melt curve (dissociation) ramp increment in the thermal profile and wait for the tooltip to pop up.

2 Chapter 2 Design the Experiment Order materials for the experiment

Your Run Method screen should look like this:

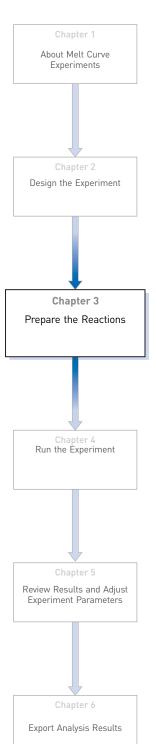



Order materials for the experiment

The recommended materials are:

- MicroAmp® Optical 384-Well Reaction Plate
- MicroAmp® Optical Adhesive Film
- Power SYBR® Master Mix
- Two target-specific primers (one forward, one reverse)

Your Materials List screen should look like this:



For more information

For more information on	Refer to	Part number
Consumables	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434
	Appendix A in Booklet 7, ViiA [™] 7 System Experiments - Appendixes	
Using Alternative Setup	Chapter 2 in Booklet 1, <i>Getting Started with ViiA™ 7 Systems</i> Experiments	4441434

Prepare the Reactions

This chapter explains how to prepare the reactions for running a PCR prior to running a Melt Curve.

To perform a Melt Curve experiment without running a PCR, use the reaction plate containing the PCR product.

Note: The example experiment performs a melt curve analysis on PCR products from a PCR performed on the $ViiA^{TM}$ 7 System or on another thermal cycler.

This chapter covers:

Assemble required materials	16
Prepare the sample dilutions	16
Prepare the reaction mix ("cocktail mix")	16
Prepare the reaction plate	17
For more information	18

Assemble required materials

- Items listed in Booklet 1, Getting Started with $ViiA^{TM}$ 7 System Experiments
- Sample 1
- Example experiment reaction mix components:
 - Power SYBR® Master Mix
 - Target Assay Mix Forward primer (10μM)
 - Target Assay Mix Reverse primer (10μM)

Prepare the sample dilutions

The stock concentration of each sample is $100 \text{ ng/}\mu\text{L}$. After you dilute the sample according to the Sample Dilutions Calculations table, the sample will have a concentration of $10 \text{ ng/}\mu\text{L}$. Add $2\mu\text{L}$ to each reaction.

Sample name	Stock concentration (ng/µL)	Sample volume (µL)	Diluent volume (µL)	Total volume of diluted sample (µL)
Sample 1	100.0	2	18	20

Prepare the reaction mix ("cocktail mix")

The following table lists the universal assay conditions [volume and final concentration for using the Power SYBR Master Mix (2X)].

Reaction Component	Volume for 1 reaction (µL)	Volume for 384 reactions + 10% excess (µL) = 424 reactions	
Power SYBR®Green PCR Master Mix (2X)	10	4240	
Forward primer (10µM)	0.1	42.4	
Reverse primer (10µM)	0.1	42.4	
Water	7.8	3307.2	
Total reaction mix volume	18	7632	

Procedure

- 1. Label an appropriately sized tube for the reaction mix: Power SYBR Reaction Mix.
- **2.** Add the required volume of each cocktail mix component to the tube.
- **3.** Mix the cocktail thoroughly by gently pipetting up and down several times, then cap the tube.

- **4.** Centrifuge the tube briefly to remove air bubbles.
- **5.** Place the cocktail mix on ice until you prepare the reaction plate.

Calculations

Determine the quantity of primer to be added to the reaction mix by performing the following calculation:

Concentration (initial) C1 x Volume (primer stock) V1 = Concentration (final) C2 x Volume (final reaction) V2

$$(10\mu\text{M}) \times (\text{V1}) = (0.05\mu\text{M}) (20\mu\text{L})$$

$$V1 = (0.05 \times 20) / 10 = 0.1$$

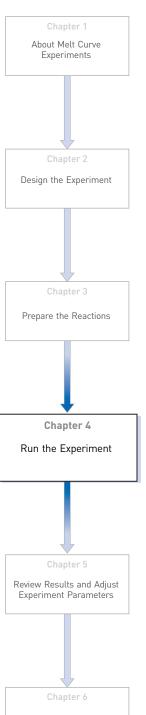
Prepare the reaction plate

- 1. Add reaction mix and sample to a tube.
 - a. To an appropriately sized tube, add the volumes of reaction mix and sample listed below.

Tube	Unknown reaction	Reaction mix	Reaction mix volume (μL)	Sample	Sample volume (μL)
1	Target 1	Power SYBR reaction mix	7632	Sample 1	848

- **b.** Mix the reactions by gently pipetting up and down, then cap the tubes.
- **c.** Centrifuge the tubes briefly to remove air bubbles.
- 2. Pipette 20 µL of the unknown (sample) reaction to each well in the reaction plate.
- **3.** Seal the reaction plate with optical adhesive film.
- **4.** Centrifuge the reaction plate briefly to remove air bubbles.
- **5.** Confirm that the liquid is at the bottom of each well of the reaction plate. If not, centrifuge the reaction plate again at a higher speed and for a longer period of time.
- **6.** Until you are ready to perform the PCR run, place the reaction plate at 4 °C, in the dark.
- 7. Run the PCR.
- **8.** After the PCR is completed, use the same reaction plate containing the PCR product to run the Melt Curve as described in Chapter 4.

Chapter 3 Prepare the Reactions For more information


For more information

For more information on	Refer to	Part number
Assigning the reaction plate components	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> ™ 7 System Experiments	4441434
Sealing the reaction plate	Chapter 1 in Booklet 1, <i>Getting Started with ViiA</i> ™ 7 System Experiments	4441434

18

Run the Experiment

Export Analysis Results

This chapter explains how run the example experiment on the Vii A^{TM} 7 Instrument.

This chapter covers:

IMPORTANT! Run the experiment at the same ambient temperature at which you calibrated the instrument. Extreme variations in ambient temperature can affect the heating and cooling of the instrument and influence experimental results.

IMPORTANT! Do not attempt to open the access door during the run. The door is locked while the ViiATM 7 Instrument is in operation.

Start the run

1. Open the Melt Curve example file that you created using instructions in Chapter 2.

IMPORTANT! The example experiment includes the melt curve analysis of a PCR product from PCR on $ViiA^{TM}$ 7 System or another thermal cycler. To run a Melt Curve on the example file you created in Chapter 2, ensure that PCR has already been performed on the reaction plate you load into the instrument. Absence of the PCR product will lead to no results in the Dissociation Step of the Melt Curve Stage.

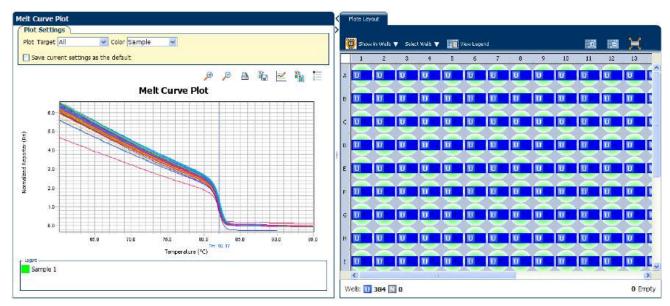
- 2. Load the reaction plate, containing the PCR product, into the instrument.
- **3.** Start the run.

Monitor the run

Monitor the example experiment run:

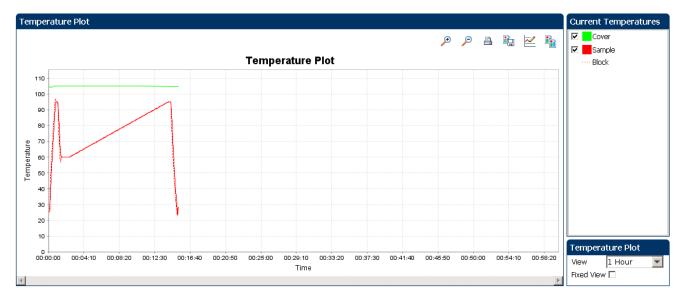
- From the ViiATM 7 Software using the Run screen, while the experiment is in progress.
- From the Instrument Console of the ViiATM 7 Software (to monitor an experiment started from another computer or from the ViiATM 7 Instrument touchscreen).
- From the ViiATM 7 Instrument touchscreen.

From the Instrument Console of the ViiA™ 7 Software


- 1. In the Instrument Console screen, select the instrument icon.
- **2.** Click **Manage Instrument** or double-click on the instrument icon.
- **3.** On the Manage Instrument screen, click **Monitor Running Instrument** to access the Run screen.

View the Melt Curve

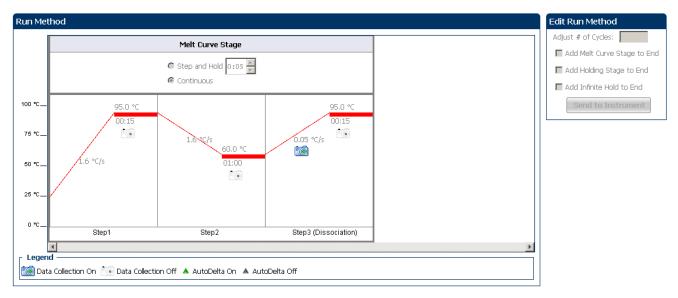
You can view the progress of the run in real time. During the run, periodically view all the three plots available from the $ViiA^{TM}$ 7 Software for potential problems.


Click **Melt Curve** from the Run Experiment Menu, select the Plate Layout tab, then select the wells to view.

The figure below shows the Melt Curve as it appears at the end of the example experiment.

View the Temperature Plot Click **Temperature Plot** from the Run Experiment Menu.

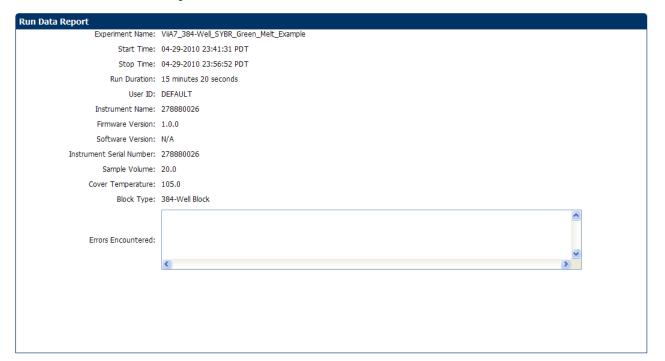
The figure below shows the Temperature Plot screen as it appears during the example experiment.


Note: The Sample temperature displayed in the Current Temperatures group is an estimated value.

Chapter 4 Run the Experiment Monitor the run

View the Run Method

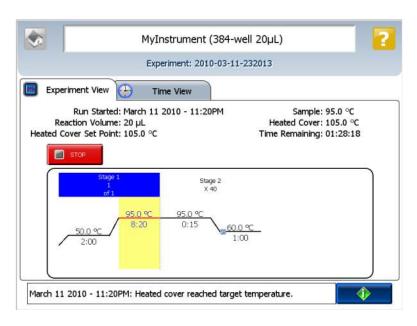
Click **Run Method** from the Run Experiment Menu.


The figure below shows the Run Method screen as it appears in the example experiment.

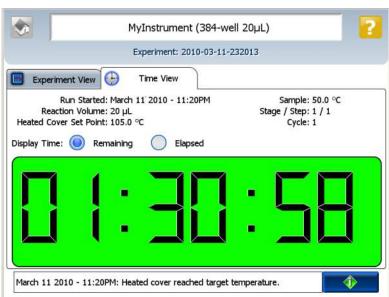
View run data

Click View Run Data from the Run Experiment Menu.

The figure below shows the View Run Data screen as it appears in the example experiment.

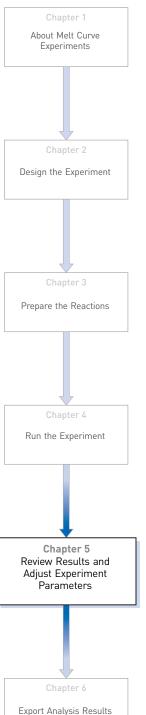


From the ViiA™ 7 Instrument touchscreen


You can also view the progress of the run from the touch screen of the Vii A^{TM} 7 Instrument.

The Run Method screen on the ViiATM 7 Instrument touchscreen looks like this:

Experiment View


Time View

Chapter 4 Run the Experiment Monitor the run

Review Results and Adjust Experiment Parameters

In Section 5.1 of this chapter you review the analyzed data using several of the analysis screens and publish the data. Section 5.2 of this chapter walks you through the process of modifying experiment parameters to troubleshoot problems with experiment results before rerunning an experiment.

This chapter covers:

Section 5.1 Review Results	27
Analyze the example experiment	27
■ View the Melt Curve Plot	27
■ Identify well problems using the Well Table	29
Confirm accurate dye signal using the Multicomponent Plot	3
■ Determine signal accuracy using the Raw Data Plot	32
Review the flags in the QC Summary	34
For more information.	36
Section 5.2 Adjust parameters for re-analysis of your own experiments	37
Adjust analysis settings	37
For more information	42

Section 5.1 Review Results

Analyze the example experiment

- 1. Open the example experiment file that you ran in Chapter 4.
- Click Analyze. The software analyzes the data using the default analysis settings.Note: You can also access the experiment to analyze from the Home screen.

View the Melt Curve Plot

View the Melt Curve Plot as the Derivative Reporter (-Rn) versus the Temperature Plot generated by the target.

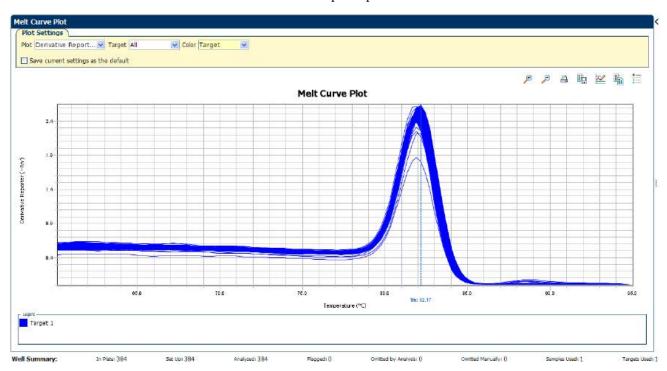
The Melt Curve screen displays the melt curve of the targets in the selected wells. Use the Melt Curve plots to confirm the results of the experiment:

- Normalized Reporter (Rn) vs. Temperature This plot displays the fluorescence signal from the reporter dye normalized to the fluorescence signal of the passive reference. You can use this plot to see the change in Rn with change in the temperature. You cannot use this plot to determine the Tm of the target.
- **Derivative Reporter (-Rn) vs. Temperature** This plot displays the derivative reporter signal in the y-axis. The peaks in the plot indicate significant decrease in SYBR Green signal, and therefore the Tm of the target.

Purpose

The purpose of viewing the Melt Curve Plot for the example experiment is to review the melting temperature of the target.

To view and assess the Melt Curve


- From the Experiment menu pane, select Analysis ➤ Melt Curve Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Enter the Plot Settings:

Menu	Selection
Plot	Derivative Reporter
Target	All
Plot Color	Target

Menu	Selection
	Check (default)
(This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend .)	

The Melt Curve for the example experiment looks like this:

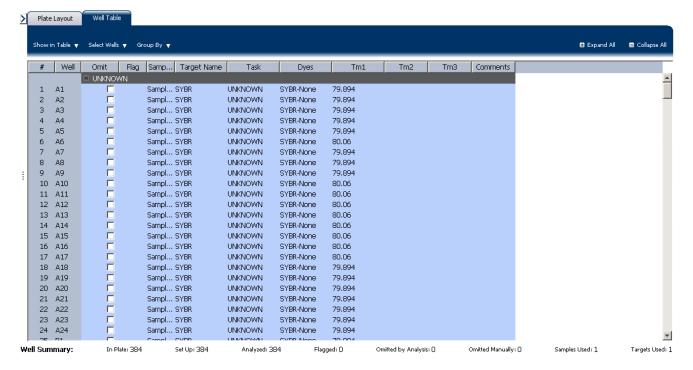
Tips for viewing melt curves in your own experiments

When you analyze your own Melt Curve experiment, look for wells with multiple peaks, indicating non-specific amplifications or primer dimer formation.

If your experiment does not amplify properly or indicates non-specific amplification, troubleshoot by manually adjusting the Melt Curve settings (see "Adjust analysis settings" on page 37).

Identify well problems using the Well Table

Review the details of the experiment results in the well table and identify any flagged wells. The well table displays the assay-specific setup and analysis properties for the experiment in a tabular format.


Example experiment values and flags

For the example experiment, confirm that no wells of the reaction plate triggered QC flags \triangle .

View the well table

- 1. Select the Well Table tab.
- 2. Click the **Flag** column header to sort the data so that the wells that triggered flags appear at the top of the table.
- **3.** Confirm the integrity of the controls:
 - **a.** From the Group By menu, select **Task** to organize the table rows by their function on the reaction plate.
 - **b.** Confirm that each of the controls do not display flags ($\frac{1}{1}$).

The figure below shows the well table of the example Melt Curve experiment.

The table below gives the description of each column in the well table.

Column	Description
Well	The position of the well on the reaction plate.
Omit	A check mark indicates that the well has been removed from the analysis.
Flag	A 1 indicates that the well triggered the number of flags listed inside the symbol.
Sample Name	The name of the sample.
Target Name	The name of the target evaluated by the well.
Task	The task assigned to the well (Unknown, Negative Control, or Positive Control).
Dyes	The name of the reporter and quencher dyes of the associated sample for the target evaluated by the well.
Tm1	The melting temperature of the target.
Tm2	The second melting temperature (for targets with multiple melting temperatures).
Tm3	The third melting temperature (for targets with multiple melting temperatures).

Tips for viewing well tables your own experiments

When you analyze your own experiment:

- Review the data for the Unknown samples. For each row that displays ▲ in the Flag column, note the data and the flag(s) triggered by the associated well.
- Select areas of the table or wells of a specified type by:
 - Left-clicking the mouse and dragging across the area you want to select an area of the table.
 - Selecting Sample, Target, or Task from the Select Items menu in the Well
 Table tab, then selecting the sample, target, or task name from the second
 Select Items menu to select wells of a specific type using the well-selection
 tool.
- Group the rows of the plate layout by selecting an option from the Group By menu. You can then collapse or expand the lists either by clicking the +/- icon next to individual lists, or by clicking Collapse All or Expand All.
- Omit a well from the analysis by selecting the **Omit** check box for that well. To include the well in the analysis, deselect the **Omit** check box.

Note: You must reanalyze the experiment each time you omit or include a well.

Confirm accurate dye signal using the Multicomponent Plot

The Multicomponent Plot screen displays the complete spectral contribution of each dye in a selected well over the duration of the PCR run.

Purpose

In the Melt Curve example experiment, you review the Multicomponent Plot screen for:

- ROXTM dye (passive reference)
- SYBR[®] dye (reporter)
- Spikes, dips, and/or sudden changes

View the Multicomponent Plot

- From the Experiment Menu pane, select Analysis ▶ Multicomponent Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display the unknown wells in the plate layout to display the corresponding data in the Multicomponent Plot screen:
 - a. Click the **Plate Layout** tab.
 - **b.** Select one well in the plate layout; the well is shown in the Multicomponent Plot screen.

Note: If you select multiple wells, the Multicomponent Plot screen displays the data for all selected wells simultaneously.

- **3.** From the Plot Color drop-down menu, select **Dye**.
- **4.** Click **Show a legend for the plot** (default).

Note: This is a toggle button. When the legend is displayed, the button changes to Hide the plot legend.

- **5.** Check the ROX dye signal. In the example experiment, the ROX dye signal remains constant throughout the PCR process; a constant ROX dye signal indicates typical data.
- **6.** Check the SYBR dye signal. In the example experiment, because the PCR run has already been completed, the SYBR dye signal shows gradual decrease throughout the run and a sudden dip in the fluorescence at one point; the sudden drop in the SYBR dye signal indicates the melting temperature of the target.

The Multicomponent Plot screen for the example experiment looks like this:

Tips for confirming dye accuracy in your own experiment

When you analyze your own Melt Curve experiment, look for:

- Passive reference The passive reference dye fluorescence level should remain relatively constant throughout the PCR process.
- Reporter dye The reporter dye fluorescence level should display a flat region corresponding to the baseline, followed by a rapid rise in fluorescence as the amplification proceeds. If the Melt Curve is being performed post-PCR, then there should be a gradual decrease in fluorescence and a sudden dip indicating the melting temperature of the target.
- Irregularities in the signal There should not be any spikes, dips, and/or sudden changes in the fluorescent signal.

Determine signal accuracy using the Raw Data Plot

The Raw Data Plot screen displays the raw fluorescence signal (not normalized) for each optical filter for the selected wells during each cycle of the real-time PCR.

About the example experiment

In the Melt Curve example experiment, you review the Raw Data Plot screen for a stable increase in signal (no abrupt changes or dips) from the appropriate filter.

View the Raw Data Plot

- From the Experiment Menu pane, select Analysis ➤ Raw Data Plot.
 Note: If no data are displayed, click Analyze.
- **2.** Display all 384 wells in the Raw Data Plot screen by clicking the upper left corner of the plate layout in the Plate Layout tab.
- 3. Click Show a legend for the plot (default). The legend displays the color code for each row of the reaction plate (see the legend in the Raw Data Plot shown below).
- **4.** Click and drag the Show Cycle pointer from cycle 1 to cycle 130. In the example experiment, the signal from filter 1, which corresponds to the SYBR[™] dye filter, is stable throughout.

Note: The readings shown below are from the example experiment. Actual results will vary with individual experiment setup.


Note: The cycle number in the Melt Curve represents the number of data collection points for that experiment.

The filters used for the example experiment are:

Tips for determining signal accuracy in your own experiments

When you analyze your own Melt Curve experiment, look for the following in each filter:

- Characteristic signal growth
- No abrupt changes or dips

Review the flags in the QC Summary

The QC Summary screen displays a list of the ViiA™ 7 Software flags, including the flag frequency and location for the open experiment.

View the QC Summary

1. From the Experiment Menu pane, select **Analysis** ▶ **QC Summary**. **Note:** If no data are displayed, click **Analyze**.

2. Review the Flags Summary.

Note: A 0 displayed in the Frequency column indicates that the flag does not appear in the experiment. If the frequency is >0, the flag appears somewhere in the experiment; the well position is listed in the Wells column.

In the example experiment, there are no flagged wells.

- **3.** In the Flag Details table, click each flag with a frequency >0 to display detailed information about the flag. In the example experiment, the Frequency column displays 0 for the three flags NOSIGNAL, OFFSCALE, and MTP.
- **4.** (*Optional*) For those flags with frequency >0, click the troubleshooting link to view information on correcting the flag.

The QC Summary for the example experiment looks like this:

Possible flags

For Melt Curve experiments that do not include amplification, the flags listed below may be triggered by the experiment data.

Flag	Description	
Pre-processing flag		
OFFSCALE	Fluorescence is offscale	
Primary analysis flag		
NOSIGNAL	No signal in well	
Secondary analysis flag		
MTP	Multiple Tm peaks	

For Melt Curve experiments that include amplification, the flags listed below may be triggered by the experiment data.

Flag	Description		
Pre-processing flag			
OFFSCALE	Fluorescence is offscale		
ı	Primary analysis flags		
BADROX	Bad passive reference signal		
NOAMP	No amplification		
NOISE	Noise higher than others in plate		
SPIKE	Noise spikes		
NOSIGNAL	No signal in well		
EXPFAIL	Exponential algorithm failed		
BLFAIL	Baseline algorithm failed		
THOLDFAIL	Thresholding algorithm failed		
CTFAIL	C _T algorithm failed		
Secondary analysis flags			
MTP	Multiple Tm peaks		
OUTLIERRG	Outlier in replicate group		
AMPNC	Amplification in negative control		
HIGHSD	High standard deviation in replicate group		

Note: When you use the Relative Threshold algorithm, the EXPFAIL, BLFAIL, THOLDFAIL, and CTFAIL flags are not reported by the algorithm, but they appear in the QC Summary (by default, a 0 is displayed in the Frequency column for each flag).

For more information

For more information on	Refer to	Part number
Publishing data	Chapter 1 in Booklet 1, <i>Getting Started with ViiA™ 7 System Experiments</i>	4441434

Section 5.2 Adjust parameters for re-analysis of your own experiments

Adjust analysis settings

The Analysis Settings dialog box displays the analysis settings for the Melt Curve and flags.

If the default analysis settings in the ViiATM 7 Software are not suitable for your own experiment, you can change the settings in the Analysis Settings dialog box, then reanalyze your experiment.

View the analysis settings

- 1. From the Experiment Menu pane, select **Analysis**.
- **2.** Click **Analysis** ▶ **Analysis Settings** to open the Analysis Settings dialog box. In the example experiment, the default analysis settings are used for each tab:
 - Melt Curve Settings
 - C_T Settings
 - Flag Settings
 - Advanced Settings

Note: The C_T Settings and Advanced Settings tabs appear in the Analysis Settings dialog box only if the Melt Curve experiment you are performing includes the PCR process.

Note: Select the **Include PCR** check box on the Experiment Properties screen to include amplification in your Melt Curve experiment.

Analysis Settings for ViiA7_384-Well_SYBR_Green_Melt_Example Cr Settings Flag Settings Advanced Settings Melt Curve Settings Review the default settings for analysis of targets in this experiment. To use different settings for a target, select the target from the table, deselect Enable Multi-Peak Calling, then change the settings. Select a Target Multi-Peak Setting for Target 1 Target Multi-Peak Calling Peak Level (%) ✓ Enable Multi-Peak Calling Target 1 Enabled 10.00 Peak level relative to the dominant peak (%): 10.00

The Analysis Settings dialog box for a Melt Curve experiment looks like this:

3. View and, if necessary, change the analysis settings (see "Adjust analysis settings" below).

Revert to Default Analysis Settings

Apply Analysis Settings

Cancel

Note: You can save the changes to the analysis settings to the Analysis Settings Library for later use. For more information, see About the Analysis Settings Library in Booklet 1, *Getting Started with ViiA*TM 7 *System Experiments*.

4. Click **Apply Analysis Settings** to apply the current analysis settings.

Note: You can go back to the default analysis settings, by clicking **Revert to Default Analysis Settings**.

Save to Library

Load from Library

Adjust analysis settings

You may change the following settings:

Melt Curve Settings

Use this tab to:

- Enable or disable multi-peak calling.
 - Select the Enable the Multi-Peak Calling check box if you expect to amplify
 more than 1 PCR product and you want to determine the Tm for more than
 one peak.
 - Deselect the Enable the Multi-Peak Calling check box if you expect to amplify 1 PCR product and you do not want to determine the Tm for more than one peak.
- Enter a value (in percentage) for the peak level relative to the dominant peak. Specify a fractional level value as the peak detection threshold. The detected peaks are measured relative to the height of the tallest peak, which has a perfect fractional level 100%. The default value is initially set at 10%.

For example, if you set a fractional level detection threshold value at 40, then only peaks above 40% of the tallest peak are reported and the peaks at lower height are regarded as noise.

C_T Settings

Data Step Selection

Use this feature to select one stage/step combination for C_T analysis when there is more than one data collection point in the run method.

Algorithm Settings

You can select the algorithm that determines the C_T values. There are two algorithms: Baseline Threshold (the default) and Relative Threshold.

The Baseline Threshold algorithm is an expression estimation algorithm that subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

The Relative Threshold algorithm lets you compare the data on a per-well or pertarget basis. This setting is ideal for analyzing a single gene across samples or a single sample across genes with no dependence on targets, thereby reducing variability. Any settings for baseline or threshold do not affect the analysis when you use the Relative Threshold algorithm.

• Default C_T Settings

Use the default C_T settings feature to calculate C_T for the targets that do not have custom settings. To edit the default settings, click **Edit Default Settings**.

• C_T Settings for Target

When you manually set the threshold and baseline, Applied Biosystems recommends:

Setting	Recommendation				
Threshold	Enter a value for the threshold so that the threshold is:				
	Above the background.				
	Below the plateau and linear regions of the amplification curve.				
	Within the exponential phase of the amplification curve.				

Setting	Recommendation	
Baseline	Select the Start Cycle and End Cycle values so that the baseline ends before significant fluorescent signal is detected.	

Note: This setting is applicable only to the Baseline Threshold algorithm.

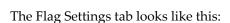
Note: Selecting Automatic Threshold implies selection of automatic setting of the baseline. However, if Automatic Threshold is deselected, then you can choose between setting the baseline either automatically or manually.

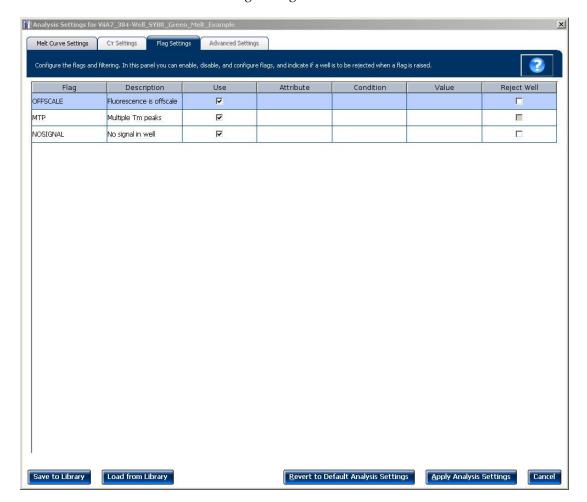
Flag Settings

Use the Flag Settings tab to:

- Adjust the sensitivity so that more wells or fewer wells are flagged.
- Change the flags that are applied by the ViiA™ 7 Software.

To adjust the flag settings:


- 1. In the Use column, select the check boxes for flags to apply during analysis.
- **2.** (*Optional*) If an attribute, condition, and value are listed for a flag, specify the setting for applying the flag.


Note: If you choose to adjust the setting for applying a flag, make minor adjustments as you evaluate the appropriate setting.

3. In the Reject Well column, select the check boxes if you want the software to reject wells with the flag.

Note: After you have rejected the flagged wells, analysis results depend on factors such as the experiment type and flag type. For example, rejecting wells flagged by HIGHSD in experiments using the Standard Deviation calculations may change the result of C_T SD. For some flags, analysis results calculated before the well is rejected are maintained.

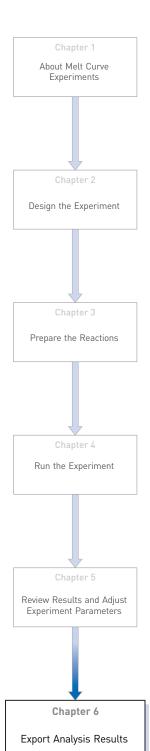
4. Click **Apply Analysis Settings** in the Analysis Settings dialog box. If the run status is complete, the data are reanalyzed.

Advanced Settings

Use the Advanced Settings tab to change baseline settings well-by-well.

Note: The baseline and threshold values do not affect the analysis using the Relative Threshold setting.

To use custom baseline settings for a well-target combination:


- 1. Select one or more well-target combinations in the table.
- 2. Deselect the Use C_T Settings Defined for Target check box.
- **3.** Define the custom baseline settings:
 - For automatic baseline calculations, select the **Automatic Baseline** check box.
 - To define the baseline, deselect the **Automatic Baseline** check box, then enter the baseline start cycle and baseline end cycle.

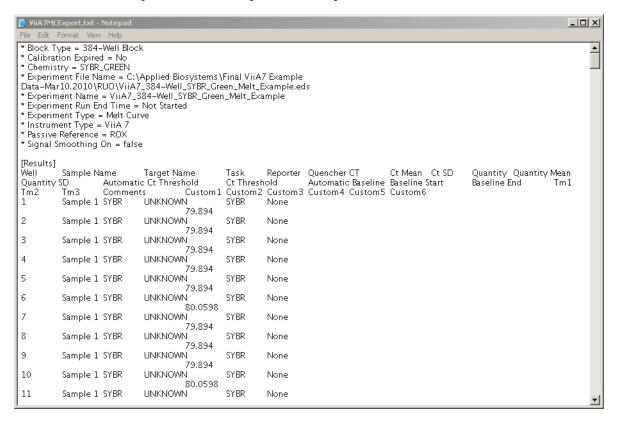
For more information

For more information on	Refer to	Part number	
Amplification efficiency	Amplification Efficiency of TaqMan® Gene Expression Assays Application Note.	127AP05-03	

Export Analysis Results

- 1. Open the Melt Curve example experiment file that you analyzed in Chapter 5.
- 2. In the Experiment Menu, click Export.

Note: To export data automatically after analysis, select the **Auto Export** check box during experiment setup or before running the experiment. Auto export is unchecked for the example experiment.


- 3. Select ViiATM7 Format.
- **4.** Complete the Export dialog box as shown below:

Field or Selection	Entry
Select Data to export/ Select Content	Results
Export Data To	One File
Export File Name	ViiA7MCExport
File Type	*.txt
Export File Location	<pre><drive>:\Applied Biosystems\ViiA7 Software v1.1\experiments</drive></pre>

Your Export screen should look like this:

Your exported file when opened in Notepad should look like this:

Index

A	defining targets and samples 9
adjusting analysis settings adjusting 37	ordering materials 12
adjusting parameters, re-analyzing own	setting up run method 10
experiments 37	dissociation curve 6
Advanced Settings tab 41	dye accuracy
Algorithm Settings	irregularities in the signal 32
Baseline Threshold 39	passive reference 32
Relative Threshold 39	reporter dye 32
amplification efficiency 42	_
amplification, include PCR 37	E
amplified products 6	Enable the Multi-Peak Calling 39
AMPNC flag 36	example experiment 6
analysis results, exporting 43	experiment properties, defining 8
analysis settings 37, 38	EXPFAIL flag 36
Advanced Settings 37	Export 43
C _T Settings 37	export analysis results 43
Flag Settings 37	extraneous peaks 6
Melt Curve Settings 37	1
Analyze 27	F
Melt Curve Plot 27	
Multicomponent Plot 31	Flag Settings tab 40
QC Summary 34	flags, QC
Raw Data Plot 32	AMPNC 36
Auto Export 7, 43	BADROX 36
Automatic Baseline 41	BLFAIL 36
Automatic Threshold 40	CTFAIL 36
	EXPFAIL 36 HIGHSD 36
В	MTP 35, 36
BADROX flag 36	NOAMP 36
BLFAIL flag 36	NOISE 36
DELTHE Hag 50	NOSIGNAL 35, 36
•	OFFSCALE 35, 36
C	OUTLIERRG 36
cocktail mix 16	SPIKE 36
C_{T} settings	THOLDFAIL 36
algorithm settings 39	fluorescence peaks 6
data step, selecting 39	•
default 39	H
target 39	
C _T Settings tab 39, 36	HIGHSD flag 36
D	1
designing experiment assigning targets and samples 10	include amplification, Pre-processing flag OFFSCALE 36
defining experiment properties 8	include amplification. Primary analysis flag

BADROX 36	0
BLFAIL 36	OFFSCALE flag 35, 36
CTFAIL 36	omit wells 30
EXPFAIL 36	ordering materials 12
NOAMP 36	OUTLIERRG flag 36
NOISE 36	
NOSIGNAL 36	P
SPIKE 36 THOLDFAIL 36	P
	preparing reactions
include amplification, Secondary analysis flags AMPNC 36	reaction mix 16
HIGHSD 36	reaction plate 17
MPT 36	required materials 16
OUTLIERRG 36	sample dilutions 16
М	Q
	QC Summary 34
melt curve experiments	QC Summary, reviewing flags 34
about 5	,
melt curve reactions 6	R
overview 6	
Melt Curve Plot 21, 27	ramp increment 11
assessing 27	editing 11
Derivative Reporter 27 Normalized Reporter 27	method, continuous (default) 11 method, step and hold 11
reactions type, negative controls 6	Raw Data Plot 32
reactions type, included the reactions type, unknowns 6	
tips for analyzing own experiment 28	raw data plot determining signal accuracy 32
viewing 20, 27	tips for analyzing own experiments 34
Melt Curve Settings tab 39	viewing 33
melt curve stage 6	reaction mix
Melting temperature (Tm) 6	components 16
MTP flag 35, 36	preparing reactions 16
multicomponent plot	reactions, assembling materials for 16
confirming dye accuracy 31	review results 27
tips for analyzing own experiment 32	run
viewing 31	monitoring 20
	starting 20
N	run method
no PCP. Pro processing flag	reaction volume per well 10
no PCR, Pre-processing flag OFFSCALE 35	setting up 10
no PCR, Primary analysis flags	thermal profile 10
NOSIGNAL 35	viewing 22
no PCR, Secondary analysis flags	Run Screen
MPT 35	Melt Curve Plot 20
NOAMP flag 36	Run Method 22
NOISE flag 36	Temperature Plot 21
NOSIGNAL flag 35, 36	View Run Data 22
1,0010111111111111111111111111111111111	Run screen 20

S

```
sample dilutions, preparing reactions 16
Sample temperature 21
samples, defining 9
single-stranded DNA 6
SPIKE flag 36
Т
target DNA 6
targets and samples
   assigning 10
   defining 9
targets, defining 9
temperature plot, viewing 21
thermal profile, setting up 10
THOLDFAIL flag 36
touchscreen, running the experiment from
   Experiment View 23
   Time View 23
troubleshooting
   multiple peaks 28
   non-specific amplification 28
W
well table
   identifying well problems 29
   tips for viewing own experiments 30
   viewing 29
well table, column
   Dyes 30
   Flag 30
   Omit 30
   Sample Name 30
   Target Name 30
   Task 30
   Tm1 30
   Tm2 30
   Tm3 30
   Well 30
```

Index

Part Number 4441434 Rev. C 12/2011 applied biosystems by Life technologies

BOOKLET 7

ViiA[™] 7 System Experiments -Appendixes

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Contents

APPENDIX A	Ordering Information	5
	Consumables	6
	Calibration and verification consumables	
	Experiment consumables	8
	Reagents	9
	General-use materials and consumables	10
APPENDIX B	Safety	11
	Instrumentation safety	12
	Symbols on instruments	
	Locations of safety labels on instruments	
	General instrument safety	15
	Physical hazard safety	16
	Electrical safety	16
	Bar code scanner laser safety	17
	Workstation safety	17
	Safety and electromagnetic compatibility (EMC) standards	18
	Chemical safety	19
	General chemical safety	19
	SDSs	20
	Chemical waste safety	20
	Biological hazard safety	22
	Safety alerts	23
	General alerts for all chemicals	
	General alerts for instrumentation	23
	Specific alerts for instrumentation	23
	Documentation and Support	25
	Related documentation	25
	Other related documents	26
	How to obtain support	27
	Obtaining information from the Help system	
	Glossary	29
	Index	45

Contents

Ordering Information

This appendix covers:

Consumables		(
Reagents	. .	Ģ
General-use materials and consumables	1	(

Consumables

The consumables listed below are required for calibrating the Vii A^{TM} 7 Instrument and for performing experiments with the Vii A^{TM} 7 System.

Note: For reagent or consumable shelf-life expiration date, see the package label.

Calibration and verification consumables

The following table shows the reagents and consumables required to calibrate the $ViiA^{TM}$ 7 Instrument.

384-well sample block

Consumable	Part number	Shelf-life at environmental temperature	Storage conditions (°C)
384-Well Spectral Calibration Plate with FAM [™] Dye	4432271	Use the	-15 to -25
384-Well Spectral Calibration Plate with VIC® Dye	4432278	consumable by the expiration	
384-Well Spectral Calibration Plate with ROX [™] Dye	4432284	date mentioned	
384-Well Spectral Calibration Plate with SYBR® Green Dye	4432290	on the package	
384-Well Spectral Calibration Plate with TAMRA™ Dye	4432296		
384-Well Spectral Calibration Plate with NED™ Dye	4432302		
384-Well Region of Interest (ROI) and Background Plates	4432320		
384-Well Normalization Plates with FAM™/R0X™ and VIC®/R0X™ Dyes	4432308		
TaqMan® RNase P Fast 384-Well Instrument Verification Plate	4455280		

96-well (0.2µL) sample block

Consumable	Part number	Shelf-life at environmental temperature	Storage conditions (°C)		
96-Well Spectral Calibration Plate with FAM [™] Dye	4432327	Use the	-15 to -25		
96-Well Spectral Calibration Plate with VIC® Dye	4432334	consumable by the expiration date mentioned on the package			
96-Well Spectral Calibration Plate with ROX [™] Dye	4432340		date mentioned		
96-Well Spectral Calibration Plate with SYBR® Green Dye	4432346				
96-Well Spectral Calibration Plate with TAMRA™ Dye	4432352				
96-Well Spectral Calibration Plate with NED™ Dye	4432358			_	
TaqMan [®] RNase P 96-Well Instrument Verification Plate	4432382				
96-Well Region of Interest (ROI) and Background Plates	4432364				
96-Well Normalization Plates with FAM™/ROX™ and VIC®/ROX™ Dyes	4432370				
TaqMan [®] RNase P 96-Well Instrument Verification Plate	4432382				

Fast 96-well (0.1µL) sample block

Consumable	Part number	Shelf-life at environmental temperature	Storage conditions (°C)
Fast 96-Well Spectral Calibration Plate with FAM [™] Dye	4432389	Use the	-15 to -25
Fast 96-Well Spectral Calibration Plate with VIC® Dye	4432396	consumable by the expiration	
Fast 96-Well Spectral Calibration Plate with ROX [™] Dye	4432402	date mentioned	
Fast 96-Well Spectral Calibration Plate with SYBR® Green Dye	4432408	on the package	
Fast 96-Well Spectral Calibration Plate with TAMRA™ Dye	4432414		
Fast 96-Well Spectral Calibration Plate with NED™ Dye	4432420		
Fast 96-Well Region of Interest (ROI) and Background Plates	4432426		
Fast 96-Well Normalization Plates with FAM™/ROX™ and VIC®/ROX™ Dyes	4432432		
TaqMan [®] RNase P Fast 96-Well Instrument Verification Plate	4351979		

Array card sample block

Consumable	Part number	Shelf-life at environmental temperature	Storage conditions (°C)
ViiA [™] 7 Array Card Spectral Dye Calibration Kit	4432314	Use the	-15 to -25
ViiA [™] 7 Array Card RNase P Instrument Verification Kit	4432265	consumable by the expiration date mentioned on the package	

Experiment consumables

The following table shows the reagents and consumables required to perform experiments with the ViiATM 7 System.

Consumable		Part number	Shelf-life at environmental temperature	Storage conditions	
Array Card Buckets/Clip Set	1st Generation	4337762	Use the	Room	
	2nd Generation	4442571	consumable by the expiration	temperature	
TaqMan® Array Micro Fluidic Card Sealer		4331770	date mentioned		
MicroAmp® Optical 384-Well Reaction Plate	1000 plates	4343814	on the package		
with Barcode	500 plates	4326270			
	50 plates	4309849			
MicroAmp® Optical 384-Well Reaction Plate, 1	000 plates	4343370			
MicroAmp® Optical 96-Well Reaction Plate	500 plates	4316813	-		
(0.2µL)	10 plates	N8010560			
MicroAmp® Optical 96-Well Reaction Plate	500 plates	4326659			
with Barcode (0.2μL	20 plates	4306737			
MicroAmp [®] Fast Optical 96-Well Reaction Plate (0.1µL)	10 plates	4346907			
MicroAmp® Fast Optical 96-Well Reaction	200 plates	4366932			
Plate with Barcode (0.1µL)	20 plates	4346906			
Centrifuge Buckets, Array Card	1 st Generation	4337230			
	2 nd Generation	4442573			
Clip, Array Card Centrifuge Adaptor	-	4334682			
MicroAmp [®] Optical Adhesive Film	100 films	4311971			
	25 films	4360954			
MicroAmp [®] Multi-Removal Tool (1 tool)	-	4313950			
RT-PCR Grade Water		AM9935			
MicroAmp® Optical 8-Cap Strip	300 strips	4323032			
MicroAmp® Optical 8-Tube Strip (0.2µL)	125 strips	4316567			
MicroAmp® Fast 8-Tube Strip (0.1µL)	125 strips	4358293			
MicroAmp® Optical Tube without cap (0.2μL)	2000 tubes	N8010933			
MicroAmp [®] Fast Reaction Tube with cap (0.1µL)	1000 tubes	4358297			
MicroAmp [®] 96-Well Tray/Retainer Set (Blue) (for 0.2µL)	10 pairs	4381850			
MicroAmp® 96-Well Tray (Black) (for 0.1µL)	10 plates	4379983			

Consumable		Part number	Shelf-life at environmental temperature	Storage conditions
ViiA [™] 7 System 96-Well Plate Adapter (0.2µL)	1 piece	4459845	Use the	Room
ViiA [™] 7 System Fast 96-Well Plate Adapter (0.1µL)	1 piece	4459846	the expiration date mentioned	temperature
ViiA [™] 7 System 96-Well Tube Adapter (0.2µL)	1 piece	4462077	on the package	
ViiA [™] 7 System 96-Well Tube Adapter (0.1µL)	1 piece	4462078		
ViiA [™] 7 System 384-Well Plate Adapter	1 piece	4457087		
ViiA [™] 7 System Array Card Adapter	1 piece	4454166		
MicroAmp® Cap Installing Tool (Handle) (1 tool		4330015		
MicroAmp® Adhesive Film Applicator (5 application (itors)	4333183		

Reagents

The following table lists the reagents that can be ordered for performing experiments with the $ViiA^{\text{TM}}$ 7 System.

Recommended reagent kits				
To perform	Part Number			
Reverse Transcription	everse Transcription SuperScript® VILO™ cDNA Synthesis Kit			
TaqMan [®] PCR	TaqMan [®] Fast Advanced Master Mix			
	TaqMan [®] GTXpress [™] Master Mix	4401892		
	TaqMan® Fast Virus 1-Step Master Mix	4444432		
	TaqMan® Gene Expression Master Mix	4369016		
	TaqMan [®] Genotyping Master Mix	4371355		
	TaqMan [®] Universal Master Mix II, with UNG	4440038		
	TaqMan [®] RNA-to-CT [™] 1-Step Kit	4392938		
SYBR® Green PCR	Fast SYBR® Green Master Mix	4385612		
	Power SYBR® Green PCR Master Mix	4367659		
	Power SYBR [®] Green RNA-to-CT™ 1-Step Kit	4389986		

General-use materials and consumables

The following general-use materials and consumables are required to calibrate, maintain, and perform experiments with the Vii A^{TM} 7 System. Unless indicated otherwise, all materials shown below are available from major laboratory suppliers (MLS). The materials are applicable to all sample blocks.

Material/Consumable	Source
Bleach, 10% solution	MLS
Lint-free lab tissues	MLS
Cotton or nylon swabs and lint-free cloths	MLS
Centrifuge with buckets appropriate for your consumable type	MLS
Ethanol, 95% solution	MLS
Glasses, safety	MLS
Gloves, powder-free	MLS
Permanent marker or pen	MLS
Pipettors: 100-μL and 200-μL (with pipette tips)	MLS
Screwdriver, flathead	MLS

Safety

This appendix covers:

Instrumentation safety
Symbols on instruments
Locations of safety labels on instruments
General instrument safety
Physical hazard safety
Electrical safety
Bar code scanner laser safety
Workstation safety
Safety and electromagnetic compatibility (EMC) standards
Chemical safety
General chemical safety
SDSs
Chemical waste safety
Biological hazard safety
Safety alerts
General alerts for all chemicals
General alerts for instrumentation
Specific alerts for instrumentation

Instrumentation safety

Symbols on instruments

Electrical symbols on instruments

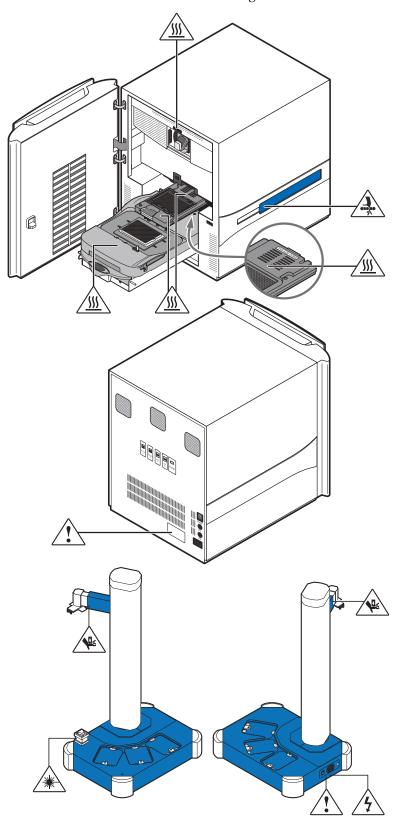
The following table describes the electrical symbols that may be displayed on Applied Biosystems instruments.

Symbol	Description	Symbol	Description
	Indicates the On position of the main power switch.	Indicates a protective groun terminal that must be connected to earth ground	
0	Indicates the Off position of the main power switch.		before any other electrical connections are made to the instrument.
Ť	Indicates a terminal that may be connected to the signal ground reference of another	~	Indicates a terminal that can receive or supply alternating current or voltage.
	instrument. This is not a protected ground terminal.		Indicates that the device receives or supplies direct current or voltage.

Safety symbols

The following table describes the safety symbols that may be displayed on Applied Biosystems devices. Each symbol may appear by itself or with text that explains the relevant hazard. These safety symbols may also appear next to DANGERS, WARNINGS, and CAUTIONS that occur in the text of this and other product-support documents.

Symbol	Description		Symbol	Description
Indicates that you should proceed with appropriate caution and consult the product			Indicates the presence of a pinching hazard and to proceed with appropriate caution.	
insert for further information. If a product insert does not exist, or if the product insert does not contain the symbol or the required information, consult the user manual.		Indicates the presence of moving parts and to proceed with appropriate caution.		
		Indicates the presence of a biological hazard and to proceed with appropriate caution.		
<u></u>	Indicates the presence of an electrical shock hazard and to proceed with appropriate caution.		*	Indicates the presence of a laser light in the instrument and to proceed with appropriate caution.
<u></u>	Indicates the presence of a hot surface or other high-temperature hazard and to proceed with appropriate caution.			Indicates the presence of an ultraviolet light and to proceed with appropriate caution.


Environmental symbols on instruments

The following symbol applies to all Applied Biosystems electrical and electronic products placed on the European market after August 13, 2005.

Symbol	Description
	Do not dispose of this product as unsorted municipal waste. Follow local municipal waste ordinances for proper disposal provisions to reduce the environmental impact of waste electrical and electronic equipment (WEEE). European Union customers: Call your local Applied Biosystems Customer Service office for equipment pick-up and recycling. See www.appliedbiosystems.com for a list of customer service offices in the European Union.

Locations of safety labels on instruments

The ViiATM 7 Instrument contains warnings at the locations shown below:

General instrument safety

WARNING! PHYSICAL INJURY HAZARD. Use this product only as specified in this document. Using this instrument in a manner not specified by Applied Biosystems may result in personal injury or damage to the instrument.

Moving and lifting the instrument

CAUTION! PHYSICAL INJURY HAZARD. The instrument is to be moved and positioned only by the personnel or vendor specified in the applicable site preparation guide. If you decide to lift or move the instrument after it has been installed, do not attempt to lift or move the instrument without the assistance of others, the use of appropriate moving equipment, and proper lifting techniques. Improper lifting can cause painful and permanent back injury. Depending on the weight, moving or lifting an instrument may require two or more persons.

Moving and lifting stand-alone computers and monitors

WARNING! Do not attempt to lift or move the computer or the monitor without the assistance of others. Depending on the weight of the computer and/or the monitor, moving them may require two or more people.

Things to consider before lifting the computer and/or the monitor:

- Make sure that you have a secure, comfortable grip on the computer or the monitor when lifting.
- Make sure that the path from where the object is to where it is being moved is clear of obstructions.
- Do not lift an object and twist your torso at the same time.
- Keep your spine in a good neutral position while lifting with your legs.
- Participants should coordinate lift and move intentions with each other before lifting and carrying.
- Instead of lifting the object from the packing box, carefully tilt the box on its side and hold it stationary while someone slides the contents out of the box.

Operating the instrument

Ensure that anyone who operates the instrument has:

- Received instructions in both general safety practices for laboratories and specific safety practices for the instrument.
- Read and understood all applicable Safety Data Sheets (SDSs). See "About SDSs" on page 20.

Cleaning or decontaminating the instrument

CAUTION! Before using a cleaning or decontamination method other than those recommended by the manufacturer, verify with the manufacturer that the proposed method will not damage the equipment.

Physical hazard safety

Ultraviolet light

WARNING! ULTRAVIOLET LIGHT HAZARD. Looking directly at a UV light source can cause serious eye damage. Never look directly at a UV light source and always prevent others from UV exposure. Follow the manufacturer's recommendations for appropriate protective eyewear and clothing.

Moving parts

WARNING! PHYSICAL INJURY HAZARD. Moving parts can crush and cut. Keep hands clear of moving parts while operating the instrument. Disconnect power before servicing the instrument.

Electrical safety

WARNING! ELECTRICAL SHOCK HAZARD. Severe electrical shock can result from operating the ViiATM 7 Instrument without its instrument panels in place. Do not remove instrument panels. High-voltage contacts are exposed when instrument panels are removed from the instrument.

Fuses

WARNING! FIRE HAZARD. Improper fuses or high-voltage supply can damage the instrument wiring system and cause a fire. Before turning on the instrument, verify that the fuses are properly installed and that the instrument voltage matches the power supply in your laboratory.

WARNING! FIRE HAZARD. For continued protection against the risk of fire, replace fuses only with fuses of the type and rating specified for the instrument.

Power

WARNING! ELECTRICAL HAZARD. Grounding circuit continuity is required for the safe operation of equipment. Never operate equipment with the grounding conductor disconnected.

WARNING! ELECTRICAL HAZARD. Use properly configured and approved line cords for the voltage supply in your facility.

WARNING! ELECTRICAL HAZARD. Plug the system into a properly grounded receptacle with adequate current capacity.

Overvoltage rating

The ViiA™ 7 Instrument has an installation (overvoltage) category of II, and is classified as portable equipment.

Bar code scanner laser safety

Laser classification

The bar code scanners included with the $ViiA^{TM}$ 7 Instrument are categorized as Class 2 (II) lasers.

Laser safety requirements

Class 2 (II) lasers are low-power, visible-light lasers that can damage the eyes. Never look directly into the laser beam. The scanner is designed to prevent human access to harmful levels of laser light during normal operation, user maintenance, or during prescribed service operations.

WARNING! LASER HAZARD. Class 2 (II) lasers can cause damage to eyes. Avoid looking into a Class 2 (II) laser beam or pointing a Class 2 (II) laser beam into another person's eyes.

Workstation safety

Correct ergonomic configuration of your workstation can reduce or prevent effects such as fatigue, pain, and strain. Minimize or eliminate these effects by configuring your workstation to promote neutral or relaxed working positions.

CAUTION! MUSCULOSKELETAL AND REPETITIVE MOTION HAZARD.

These hazards are caused by potential risk factors that include but are not limited to repetitive motion, awkward posture, forceful exertion, holding static unhealthy positions, contact pressure, and other workstation environmental factors.

To minimize musculoskeletal and repetitive motion risks:

- Use equipment that comfortably supports you in neutral working positions and allows adequate accessibility to the keyboard, monitor, and mouse.
- Position the keyboard, mouse, and monitor to promote relaxed body and head postures.

Safety and electromagnetic compatibility (EMC) standards

This section provides information on:

- U.S. and Canadian safety standards
- Canadian EMC standard
- European safety and EMC standards
- Australia and New Zealand EMC standards

U.S. and Canadian safety standards

The instrument has been tested to and complies with standard:

UL 61010-1:2nd Edition/CSA C22.2 No. 61010-1, "Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use, Part 1: General Requirements."

UL 61010-2-010, "Particular Requirements for Laboratory Equipment for the Heating of Materials." $\,$

Canadian EMC standard

This instrument has been tested to and complies with standard:

ICES-001, Issue 3: "Industrial, Scientific, and Medical Radio Frequency Generators." Cet appareil numerique de la classe B est conforme a la norme NMB-001 du Canada.

European safety and EMC standards

Safety

This instrument meets European requirements for safety (Low Voltage Directive 2006/95/EC). This instrument has been tested to and complies with standards:

EN 61010-1:2001, "Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, Part 1: General Requirements."

 $EN\ 61010\text{-}2\text{-}010\text{:}2003$, "Particular Requirements for Laboratory Equipment for the Heating of Materials."

EN 61010-2-081:2002+A1:2003, "Particular Requirements for Automatic and Semi-Automatic Laboratory Equipment for Analysis and Other Purposes."

EMC

The ViiATM 7 Real-Time PCR System meets European requirements for emission and immunity (EMC Directive 2004/108/EC).

EN 61326-1:2006 "Electrical equipment for measurement, control and laboratory use-Part 1 General EMC requirements." (Group 1, Class B)

Australia and New Zealand EMC standards This instrument has been tested to and complies with standard AS/NZS 2064, "Limits and Methods Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical (ISM) Radio-frequency Equipment."

Chemical safety

General chemical safety

Chemical hazard warning

WARNING! CHEMICAL HAZARD. Before handling any chemicals, refer to the Safety Data Sheet (SDS) provided by the manufacturer, and observe all relevant precautions.

WARNING! CHEMICAL HAZARD. All chemicals in the instrument are potentially hazardous. Always determine what chemicals have been used in the instrument before changing reagents or instrument components. Wear appropriate eyewear, protective clothing, and gloves when working on the instrument.

WARNING! CHEMICAL HAZARD. Four-liter reagent and waste bottles can crack and leak. Each 4-liter bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

WARNING! CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

Chemical safety guidelines

To minimize the hazards of chemicals:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. (See "About SDSs" on page 20.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the SDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the SDS.
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended in the SDS.
- Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

Appendix B Chemical safety

SDSs

About SDSs

Chemical manufacturers supply current Safety Data Sheets (SDSs) with shipments of hazardous chemicals to new customers. They also provide SDSs with the first shipment of a hazardous chemical to a customer after an SDS has been updated. SDSs provide the safety information you need to store, handle, transport, and dispose of the chemicals safely.

Each time you receive a new SDS packaged with a hazardous chemical, be sure to replace the appropriate SDS in your files.

Obtaining SDSs

The SDS for any chemical supplied by Applied Biosystems is available to you free 24 hours a day. To obtain SDSs:

- 1. Go to www.appliedbiosystems.com, click Support, then select SDS.
- 2. In the Keyword Search field, enter the chemical name, product name, SDS part number, or other information that appears in the SDS of interest. Select the language of your choice, then click **Search**.
- **3.** Find the document of interest, right-click the document title, then select any of the following:
 - Open To view the document
 - **Print Target** To print the document
 - Save Target As To download a PDF version of the document to a destination that you choose

Note: For the SDSs of chemicals not distributed by Applied Biosystems, contact the chemical manufacturer.

Chemical waste safety

Chemical waste hazards

CAUTION! HAZARDOUS WASTE. Refer to Safety Data Sheets and local regulations for handling and disposal.

WARNING! CHEMICAL WASTE HAZARD. Wastes produced by Applied Biosystems instruments are potentially hazardous and can cause injury, illness, or death.

WARNING! CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

Chemical waste safety guidelines

To minimize the hazards of chemical waste:

- Read and understand the Safety Data Sheets (SDSs) provided by the manufacturers of the chemicals in the waste container before you store, handle, or dispose of chemical waste.
- Provide primary and secondary waste containers. (A primary waste container
 holds the immediate waste. A secondary container contains spills or leaks from
 the primary container. Both containers must be compatible with the waste
 material and meet federal, state, and local requirements for container storage.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the SDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use
 only with adequate ventilation (for example, fume hood). For additional safety
 guidelines, consult the SDS.
- Handle chemical wastes in a fume hood.
- After emptying a waste container, seal it with the cap provided.
- Dispose of the contents of the waste tray and waste bottle in accordance with good laboratory practices and local, state/provincial, or national environmental and health regulations.

Waste disposal

If potentially hazardous waste is generated when you operate the instrument, you must:

- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure the health and safety of all personnel in your laboratory.
- Ensure that the instrument waste is stored, transferred, transported, and disposed
 of according to all local, state/provincial, and/or national regulations.

IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

Biological hazard safety

General biohazard

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective equipment, which includes but is not limited to: protective eyewear, face shield, clothing/lab coat, and gloves. All work should be conducted in properly equipped facilities using the appropriate safety equipment (for example, physical containment devices). Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially infectious materials. Read and follow the applicable guidelines and/or regulatory requirements in the following:

In the U.S.:

- U.S. Department of Health and Human Services guidelines published in Biosafety in Microbiological and Biomedical Laboratories (www.cdc.gov/ biosafety/publications/index.htm)
- Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030; www.access.gpo.gov/ nara/cfr/waisidx_01/29cfr1910a_01.html).
- Your company's/institution's Biosafety Program protocols for working with/handling potentially infectious materials.
- Additional information about biohazard guidelines is available at www.cdc.gov.

In the EU:

Check local guidelines and legislation on biohazard and biosafety precaution and refer to the best practices published in the World Health Organization (WHO) Laboratory Biosafety Manual, third edition http://www.who.int/csr/resources/publications/biosafety/who_CDS_CSR_LYO_2004_11/en/

Safety alerts

For the definitions of the alert words **IMPORTANT**, **CAUTION**, **WARNING**, and **DANGER**, see "Safety alert words" on page 8.

General alerts for all chemicals

Avoid contact with (skin, eyes, and/or clothing). Read the SDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

General alerts for instrumentation

CAUTION! Before using a cleaning or decontamination method other than those recommended by the Applied Biosystems, verify with Applied Biosystems that the proposed method will not damage the equipment.

WARNING! This instrument is designed for 12 V, 75 W halogen lamps only.

Specific alerts for instrumentation

CAUTION! FIRE HAZARD. For continued protection against the risk of fire, replace fuses only with listed and certified fuses of the same type and rating as those currently in the instrument.

CAUTION! PHYSICAL INJURY HAZARD. Do not attempt to lift the instrument or any other heavy objects unless you have received related training. Incorrect lifting can cause painful and sometimes permanent back injury. Use proper lifting techniques when lifting or moving the instrument. At least two people are required to lift the instrument.

CAUTION! PHYSICAL INJURY HAZARD. Do not remove the instrument cover. There are no components inside the instrument that you can safely service yourself. If you suspect a problem, contact an Applied Biosystems Service Representative.

WARNING! PHYSICAL INJURY HAZARD. The ViiA™ 7 Instrument and lamp are hot! The lamp can become very hot while in use. Allow the lamp to cool for 15 minutes and put on protective, powder-free gloves before handling it.

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the sample block can be heated to 100 °C. Before performing the following procedure, be sure to wait until the sample block reaches room temperature.

Appendix B Safety alerts

CAUTION! PHYSICAL INJURY HAZARD. Wear disposable, powder-free gloves when handling the lamp to prevent burns and to prevent shortening the life of the replacement lamp.

Documentation and Support

Related documentation

The following related documents are shipped with the system:

Document	PN	Description
Applied Biosystems ViiA™ 7 Real-Time PCR System Calibration, Maintenance, Networking, and Security User Guide	4442661	Explains how to use and maintain the Applied Biosystems ViiA™ 7 Real-Time PCR System
		Intended for laboratory staff responsible for the use and maintenance of the ViiA TM 7 Real-Time PCR Instrument.
Applied Biosystems ViiA™ 7 Real-Time PCR System Getting Started Guide	4441434	Contains five individual booklets that explain how to perform the six different experiments on the ViiA™ 7 Real-Time PCR Instrument
		The experiments include Standard Curve, Relative Standard Curve and Comparative C _T , Genotyping, Presence/ Absence and Melt Curve. Each Getting Started Guide booklet functions as both:
		 A tutorial, using example experiment data provided with the ViiATM 7 Software.
		A guide for your own experiments.
		Intended for laboratory staff and principal investigators who perform experiments using the ViiA TM 7 System.
Applied Biosystems ViiA™ 7 Real-Time PCR System Quick Reference Guide	4448987	Explains how to install and maintain the ViiA™ 7 Real-Time PCR Instrument
		Intended for laboratory staff responsible for the use and maintenance of the ViiA TM 7 Real-Time PCR Instrument.
Applied Biosystems ViiA™ 7 Real-Time PCR System Site Preparation Guide	4445302	Explains how to prepare your site to receive and install the ViiA TM 7 Real-Time PCR Instrument
		Intended for personnel who schedule, manage, and perform the tasks required to prepare your site for installation of the ViiA TM 7 Real-Time PCR Instrument.

Document	PN	Description
ViiA™ 7 Software Help	NA	Explains how to use the ViiA™ 7 Software to:
		Set up, run, and analyze experiments.
		Monitor a networked ViiA™ 7 Real-Time PCR Instrument.
		 Calibrate the ViiA[™] 7 Real-Time PCR Instrument.
		 Verify the performance of ViiA[™] 7 Real-Time PCR Instrument with an RNase P run.
		Intended for:
		 Laboratory staff and principal investigators who perform experiments using the ViiA™ 7 System.
		 Laboratory staff responsible for the installation and maintenance of the ViiA[™] 7 Real-Time PCR Instrument.

Note: For additional documentation, see "How to obtain support" on page 27.

Other related documents

Documents related to Genotyping experiments

Document	PN
Allelic Discrimination Pre-Developed TaqMan [®] Assay Reagents Quick Reference Card	4312212
Custom TaqMan® Genomic Assays Protocol	4367671
Custom TaqMan® SNP Genotyping Assays Protocol	4334431
Ordering TaqMan® SNP Genotyping Assays Quick Reference Card	4374204
Pre-Developed TaqMan [®] Assay Reagents Allelic Discrimination Protocol	4312214
TaqMan [®] Drug Metabolism Genotyping Assays Protocol	4362038
TaqMan [®] SNP Genotyping Assays Protocol	4332856

Documents related to Presence/ Absence experiments

Document	PN
DNA Isolation from Fresh and Frozen Blood, Tissue Culture Cells, and Buccal Swabs Protocol	4343586
NucPrep [®] Chemistry: Isolation of Genomic DNA from Animal and Plant Tissue Protocol	4333959
PrepMan® Ultra Sample Preparation Reagent Protocol	4318925

Documents related to Relative Standard Curve and Comparative C_T experiments

Document	PN
Amplification Efficiency of TaqMan® Gene Expression Assays Application Note	127AP05
Applied Biosystems High-Capacity cDNA Reverse Transcription Kits Protocol	4375575
Custom TaqMan [®] Gene Expression Assays Protocol	4334429
Primer Express [®] Software Version 3.0 Getting Started Guide	4362460
TaqMan [®] Gene Expression Assays Protocol	4333458
User Bulletin #2: Relative Quantitation of Gene Expression	4303859

Documents related to Standard Curve experiments

Document	PN
Amplification Efficiency of TaqMan [®] Gene Expression Assays Application Note	127AP05
Custom TaqMan® Gene Expression Assays Protocol	4334429
Primer Express [®] Software Version 3.0 Getting Started Guide	4362460
TaqMan [®] Gene Expression Assays Protocol	4333458
User Bulletin #2: Relative Quantitation of Gene Expression	4303859

How to obtain support

For the latest services and support information for all locations, go to:

www.appliedbiosystems.com

At the Applied Biosystems web site, you can:

- Access worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.
- Search through frequently asked questions (FAQs).
- Submit a question directly to Technical Support.
- Order Applied Biosystems user documents, SDSs, certificates of analysis, and other related documents.
- Download PDF documents.
- Obtain information about customer training.
- Download software updates and patches.

Obtaining information from the Help system

The ViiATM 7 Software has a Help system that describes how to use each feature of the user interface. Access the Help system by doing one of the following:

- Click ② in the toolbar of the ViiA™ 7 Software window.
- Select **Help** ▶ **ViiA**TM **7 Software Help**.
- Press F1.

You can use the Help system to find topics of interest by:

- Reviewing the table of contents
- Searching for a specific topic
- Searching an alphabetized index

You can also access PDF versions of all documents in the ViiA $^{\tiny \text{TM}}$ 7 Software document set from the Help system.

Glossary

AIF See assay information file (AIF).

AIX XML version of the assay information file.

See also assay information file (AIF).

allele In a diploid organism, one of two DNA sequences found at the same locus (for

example, a particular gene), but located on homologous chromosomes. Two

corresponding alleles may have the identical sequence, or they may differ somewhat,

often at one or more single-base sites (SNPs).

allelic discrimination

plot

Display of genotyping data collected during the post-PCR read. The allelic discrimination plot is a graph of the normalized reporter signal from the allele 1 probe,

plotted against the normalized reporter signal from the allele 2 probe.

amplicon A segment of DNA amplified during PCR.

amplification Part of the instrument run in which PCR amplifies the target. Fluorescence data

collected during amplification are displayed in an amplification plot, and the data are

used to calculate results.

Note: Only quantitative real-time PCR experiments, not end-point experiments, take

amplification data into account.

amplification efficiency (EFF%)

Calculation of the efficiency of the PCR amplification in an experiment. EFF% is calculated using the slope of the regression line in the standard curve. A slope close to –3.32 indicates optimal, 100% PCR amplification efficiency.

amplification plot

Display of data collected during the cycling stage of PCR amplification. The amplification plot can be viewed as:

- Baseline-corrected normalized reporter (ΔRn) vs. cycle
- Normalized reporter (Rn) vs. cycle
- Threshold cycle (C_T) vs. well

amplification stage

Part of the instrument run in which PCR amplifies the target. The amplification stage, called a cycling stage in the thermal profile, consists of denaturing, primer annealing, and extension steps that are repeated. Fluorescence data collected during the extension stage are displayed in an amplification plot, and the data are used to calculate results. With TaqMan chemistry, the last two steps of a PCR stage are typically combined.

See also cycling stage.

Analysis Settings Library In the software, a collection of analysis settings to use in experiments. You can save settings and reuse them. You cannot edit or import settings into the library.

assay

In a PCR reaction mix, two target-specific primers or two primers and a probe used to amplify a target.

Assay ID

Identifier assigned by Applied Biosystems to TaqMan® assays.

assay information file (AIF)

Tab-delimited data file on a CD shipped with each assay order. The AIF contains technical details about all assays in the shipment. It includes information about assay concentrations; reporters and quenchers used; part and lot numbers; and assay, vial, and plate ID numbers. The file name includes the number from the bar code on the plate.

assay mix

PCR reaction component in Applied Biosystems TaqMan[®] assays. The assay mix contains primers designed to amplify a target and a TaqMan[®] probe designed to detect amplification of the target.

AutoDelta

In the run method, a setting to increase or decrease the temperature and/or time for a step with each subsequent cycle in a cycling stage. When AutoDelta is enabled for a cycling stage, the settings are indicated by an icon in the thermal profile:

AutoDelta on: AAutoDelta off: A

automatic baseline

An analysis setting in which the software calculates the baseline start and end cycles for the amplification plot.

See also baseline.

automatic threshold

An analysis setting in which the software calculates the baseline start and end cycles and the threshold in the amplification plot. The software uses the baseline and threshold to calculate the threshold cycle (C_T) .

See also threshold cycle (C_T) .

background calibration

Type of calibration in which the instrument performs reads of a background plate, averages the spectra recorded during the run, and extracts the resulting spectral component to a calibration file. The software then uses the calibration file during subsequent runs to remove the background fluorescence from the run data.

baseline

In the amplification plot, a cycle-to-cycle range that defines background fluorescence. This range can be set manually on an assay-by-assay basis, or automatically to set each individual well.

baseline-corrected normalized reporter (ΔRn)

The magnitude of normalized fluorescence signal generated by the reporter. In experiments that contain data from real-time PCR, the magnitude of normalized fluorescence signal generated by the reporter at each cycle during the PCR amplification. In the Δ Rn vs Cycle amplification plot, Δ Rn is calculated at each cycle as:

 Δ Rn (cycle) = Rn (cycle) –Rn (baseline), where Rn = normalized reporter

In genotyping experiments and presence/absence experiments, the difference in normalized fluorescence signal generated by the reporter between the pre-PCR read and the post-PCR read. In the allelic discrimination plot (genotyping experiments) and the presence/absence plot (presence/absence experiments), ΔRn is calculated as:

 Δ Rn = Rn (post-PCR read) –Rn (pre-PCR read), where Rn = normalized reporter

See also normalized reporter (Rn).

baseline threshold algorithm

Expression estimation algorithm (C_T) which subtracts a baseline component and sets a fluorescent threshold in the exponential region for gene quantification.

biological replicates

Reactions that contain identical components and volumes, but evaluate separate samples of the same biological source (for example, samples from three different mice of the same strain, or separate extractions of the same cell line or tissue sample).

When an experiments uses biological replicate groups in a gene expression study, the values displayed in the Biological Replicates tab are calculated by combining the results of the separate biological samples and treating this collection as a single population (that is, as one sample). For ΔC_T computations (normalizing by the endogenous control) in a singleplex experiment, the software treats separate biological samples as unpaired data when computing variability estimates of the single biological replicate. Individual contributions of the separate biological samples to the single biological replicate results are observed in the Technical Replicates tab.

See also technical replicates.

blocked IPC In presence/absence experiments, a reaction that contains IPC blocking agent, which

blocks amplification of the internal positive control (IPC). In $ViiA^{TM}$ 7 Software, also the name of the task for the IPC target in wells that contain IPC blocking agent. See also

negative control-blocked IPC wells.

calibrator See reference sample.

chemistry See reagents.

comparative C_T ($\Delta\Delta C_T$) method

Method for determining relative target quantity in samples. The software measures amplification of the target and of the endogenous control in samples and in a reference sample. Measurements are normalized using the endogenous control. The software determines the relative quantity of target in each sample by comparing normalized target quantity in each sample to normalized target quantity in the reference sample.

 C_{RT} See relative threshold cycle (C_{RT}).

C_{RT} algorithm See Relative Threshold algorithm.

 C_T See threshold cycle (C_T).

C_T algorithm Algorithm used to determine the threshold cycle.

The software provides two C_T algorithms: Baseline Threshold and Relative Threshold.

cycle threshold See threshold cycle (C_T).

cycling stage In the thermal profile, a stage that is repeated. A cycling stage is also called an

amplification stage.

See also amplification stage.

 C_q See quantification cycle (C_q) .

data collection During the instrument run, a process in which an instrument detects fluorescence data

from each well of the reaction plate. The instrument transforms the signal to electronic data and saves the data in the experiment file. In the ViiATM 7 Software, a data

collection point is indicated by an icon in the thermal profile:

• Data collection on:

Data collection off:

delta Rn (Δ Rn) See baseline-corrected normalized reporter (Δ Rn).

diluent A reagent used to dilute a sample or standard before it is added to the PCR reaction.

dilution factor See serial factor.

dye calibration Type of calibration in which the software collects spectral data from a series of dye

standards and stores the spectral information for the dye standards in a pure spectra calibration file. This file is used during experiment runs to characterize and distinguish the individual contribution of each dye in the total fluorescence collected by the

instrument.

Dye Library In the software, a collection of dyes to use in experiments. Custom dyes can be added

to the library, but system dyes cannot be removed. Before using a dye, make sure that

the dye calibration is current in the Instrument Console.

EFF% See amplification efficiency (EFF%).

efficiency correction In Comparative C_T experiments, a feature that allows you to manually enter

previously-determined amplification efficiencies for each experiment, following the experimental run. The real-time software mathematically compensates for differences in efficiency between each target assay and the endogenous control when calculating sample-to-sample relative quantities. This method can be employed as a substitute for

the Relative Standard Curve Method.

endogenous control A gene that is used to normalize template differences and sample-to-sample or run-to-

run variation.

endpoint read See post-PCR read.

error The standard error of the slope of the regression line in the standard curve.

The error can be used to calculate a confidence interval (CI) for the slope. Because the amplification efficiency (EFF%) is calculated from the slope, knowing the error allows

a CI for the amplification efficiency to be calculated.

experiment

Refers to the entire process of performing a run, including setup, run, and analysis. You can perform the following types of experiments:

- Quantification Standard curve
- Quantification Relative standard curve
- Quantification Comparative $C_T (\Delta \Delta C_T)$
- Melt Curve
- Genotyping
- Presence/absence

experiment document

The Applied Biosystems name for the electronic records that comprise all information about a particular plate or array card consumable, including metadata (name, bar code, comments), plate setup (well contents, assay definitions), run method (thermal cycling protocol), run results, analysis protocol, analysis results, audit records, and other plate-specific data. Experiment documents have the suffixes .eds (experiment document single), .edt (template), and .edm (multiple).

experiment name

Entered during experiment setup, the name that is used to identify the experiment.

Experiment Setup

A software feature that allows you to set up an experiment according to your experiment design. Experiment Setup provides you with maximum flexibility in the design and setup of your experiment.

experiment type

The type of experiment to perform:

- Standard curve
- Comparative $C_T (\Delta \Delta C_T)$
- Relative standard curve
- Genotyping
- Presence/absence
- Melt curve

The experiment type that you select affects setup, run, and analysis.

export

A software feature that allows you to export experiment setup files, experiment results, instrument information, and security and auditing settings to spreadsheet, presentation, or text files. You can edit the default location of the exported file.

filter

Dye excitation and emission filter combination that you select for an experiment. The Vii A^{TM} 7 System includes a six-color filter set that supports FAMTM, ROXTM, TAMRATM, and VIC[®] dyes.

flag

A quality control (QC) indicator which, when applied by the software to a well during analysis, indicates a possible issue with that reaction. For example, a flag may be issued if no amplification is detected in a well. Flags indicating potential problems are displayed in the Quality Control tab of the plate layout, well table, and QC Summary screens.

forward primer

Oligonucleotide that flanks the 5' end of the amplicon. The reverse primer and the forward primer are used together in PCR reactions to amplify the target.

genotyping experiment

An experiment used to identify known mutations in a DNA sample. With this experiment type, you can determine if a DNA sample is:

- Homozygous (samples having only allele 1). Also called wild type homozygote.
- Homozygous (samples having only allele 2). Also called variant homozygote.
- Heterozygous (samples having both allele 1 and allele 2).

heterozygote

Samples having both allele 1 and allele 2.

See also genotyping experiment.

holding stage

In the thermal profile, the stage that holds the temperature constant for a defined period of time. A stage that includes one or more steps. You can add a holding stage to the thermal profile to activate enzymes, to inactivate enzymes, or to incubate a reaction.

homozygote

Samples having only allele 1 or only allele 2. See also genotyping experiment.

housekeeping gene

A gene that is involved in basic cellular functions and that may be constitutively expressed. Housekeeping genes may be candidates for use as endogenous controls; however, their constancy should always be validated experimentally.

See also endogenous control.

import

A software feature that allows you to import plate setup information or security settings before an experiment run. You can also import information into some libraries in the system.

Instrument Console

A software feature that allows you to view information about instruments on the network. In the Instrument Console, you can monitor the status of any instrument on the network; view calibration, maintenance, and instrument properties for a selected instrument; and open and close the instrument drawer.

Instrument Manager

A software feature that allows you to view information about instrument available on the network. In the Instrument Manager, you can monitor the status of an instrument; monitor amplification plots and temperature plots in real time; view the calibration status, perform calibrations and manage files on the instrument, including downloading completed experiments to your computer.

internal positive control (IPC)

In presence/absence experiments, a short synthetic DNA template that is added to PCR reactions. The IPC can be used to distinguish between true negative results (the target is absent in the samples) and negative results caused by PCR inhibitors, incorrect assay setup, or reagent or instrument failure.

inventoried assays

TaqMan[®] Gene Expression Assays and TaqMan[®] SNP Genotyping Assays that have been previously manufactured, passed quality control specifications, and stored in inventory.

IPC

See internal positive control (IPC).

IPC blocking agent

Reagent added to PCR reactions to block amplification of the internal positive control (IPC).

IPC+ See negative control-IPC wells.

made-to-order

assays

TaqMan[®] Gene Expression Assays that are manufactured at the time of order. Only assays that pass manufacturing quality control specifications are shipped.

manual baseline

An analysis setting for the Baseline Threshold algorithm. You enter the baseline start and end cycles for the amplification plot.

See also baseline.

manual threshold

An analysis setting for the Baseline Threshold algorithm. You enter the threshold value and select whether to use automatic baseline or manual baseline values. The software uses the baseline and the threshold values to calculate the threshold cycle (C_T) .

melt curve

A plot of data collected during the melt curve stage. Peaks in the melt curve can indicate the melting temperature (T_m) of the target, or they can identify nonspecific PCR amplification. In the software, you can view the melt curve as normalized reporter (R_n) vs. temperature or as derivative reporter ($-R_n'$) vs. temperature. In a high resolution melting experiment, you can view the melt curve as fluorescence vs. temperature. Also called dissociation curve.

melt curve characteristics

The melt curve shape and the difference in melting temperature (T_m) values.

melt curve stage

In the thermal profile, a stage with a temperature increment to generate a melt curve.

melting temperature (T_m)

The temperature at which 50% of the DNA is double-stranded and 50% of the DNA is dissociated into single-stranded DNA. In a melt curve experiment, the melt curve plot displays the melting temperature.

multicomponent plot

A plot of the complete spectral contribution of each dye for the selected well(s) over the duration of the PCR run.

negative control (NC)

The task for targets or SNP assays in wells that contain water or buffer instead of sample. No amplification of the target should occur in negative control wells. Previously called no template control (NTC).

negative controlblocked IPC wells In presence/absence experiments, wells that contain IPC blocking agent instead of sample in the PCR reaction. No amplification should occur in negative control-blocked IPC wells because the reaction contains no sample and amplification of the IPC is blocked. Previously called no amplification control (NAC).

negative control-IPC wells

In presence/absence experiments, wells that contain IPC template and buffer or water instead of sample. Only the IPC template should amplify in negative control-IPC wells because the reaction contains no sample. Previously called IPC+.

no amplification control (NAC)

See negative control-blocked IPC wells.

no template control (NTC)

See negative control (NC).

ViiA[™] 7 System Experiments - Appendixes

nonfluorescent
quencher-minor
groove binder (NFQ-
MGB)

Molecules that are attached to the 3' end of TaqMan[®] probes. When the probe is intact, the nonfluorescent quencher (NFQ) prevents the reporter dye from emitting fluorescence signal. Because the NFQ does not fluoresce, it produces lower background signals, resulting in improved precision in quantification. The minor groove binder (MGB) increases the melting temperature (T_m) of the probe without increasing its length, allowing for the design of shorter probes.

normalization calibration

Type of calibration in which the software collects data from the normalization standards, then stores it in a normalization calibration file. This file is used in comparisons of data from multiple instruments within a study.

normalized quantity

Either the C_T Avg. of the target gene minus the C_T Avg. of the endogenous control (Comparative C_T experiments), or the Q Avg. of the target divided by the Q Avg. of the endogenous control (Relative Standard Curve experiments).

normalized quantity mean

The relative standard curve equivalent of the ΔC_T mean value found in Comparative C_T experiments (computed as the geometric mean).

normalized quantity SF

The relative standard curve equivalent of the ΔC_T SE value found in Comparative C_T experiments (computed as the geometric standard error of the mean).

normalized reporter (Rn)

Fluorescence signal from the reporter dye normalized to the fluorescence signal of the passive reference dye (usually ROX dye on Applied Biosystems instruments).

omit well

An action that you perform before reanalysis to omit one or more wells from analysis. Because no algorithms are applied to omitted wells, omitted wells contain no results. You can add wells back in to the analysis; no information is permanently discarded.

outlier

A measurement (such as a C_T) that deviates significantly from the measurement of the other replicates for that same sample.

passive reference

A dye that produces fluorescence signal independent of PCR amplification, and that is added to each reaction at a constant concentration. Because the passive reference signal should be consistent across all wells, it is used to normalize the reporter dye signal to account for non-PCR related fluorescence fluctuations caused by minor well-to-well differences in volume. Normalization to the passive reference signal generally results in data with noticeably high precision among technical replicates.

plate layout

An illustration of the grid of wells and assigned content in the reaction plate. The number of rows and columns in the grid depends on the sample block that you use.

In the software, you can use the plate layout as a selection tool to assign well contents, to view well assignments, and to view results. The plate layout can be printed, included in a report, exported, and saved as a slide for a presentation.

plate setup file

A file (.txt, .csv, .xml, or .sds) that contains setup information such as the well number, sample name, sample color, target name, dyes, and other reaction plate contents.

point One standard in a standard curve. The standard quantity for each point in a standard

curve is calculated based on the starting quantity and serial factor.

genotype, homozygous or heterozygous.

In the software, the task for the SNP assay in wells that contain a sample with a known

genotype.

post-PCR read In genotyping and presence/absence experiments, the part of the instrument run that

occurs after amplification. In genotyping experiments, fluorescence data collected during the post-PCR read are displayed in the allelic discrimination plot and used to make allele calls. In presence/absence experiments, fluorescence data collected during the post-PCR read are displayed in the presence/absence plot and used to make

detection calls. Also called endpoint read.

pre-PCR read In genotyping and presence/absence experiments, the part of the instrument run that

occurs before amplification. The pre-PCR read is optional but recommended. Fluorescence data collected during the pre-PCR read can be used to normalize

fluorescence data collected during the post-PCR read.

primer mix PCR reaction component that contains the forward primer and reverse primer

designed to amplify the target.

primer/probe mix PCR reaction component that contains the primers designed to amplify the target and

a TaqMan[®] probe designed to detect amplification of the target.

pure dye Fluorescent compound used to calibrate the instrument.

See system dye.

quantification cycle

 (C^{a})

The fractional PCR cycle used for quantification, according to the Real-time PCR Data Markup Language (RDML) data standard. C_T and C_{RT} are the algorithm-specific

calculations of C_q .

quantification

method

In quantification experiments, the method used to determine the quantity of target in

the samples.

quantity In quantification experiments, the amount of target in the samples. Absolute quantity

can refer to copy number, mass, molarity, or viral load. Relative quantity refers to the fold-difference between normalized quantity of target in the sample and normalized

quantity of target in the reference sample.

quencher A molecule attached to the 3' end of TaqMan[®] probes to prevent the reporter from

emitting fluorescence signal while the probe is intact. With TaqMan[®] reagents, a nonfluorescent quencher-minor groove binder (NFQ-MGB) can be used as the

quencher.

QuickStart A feature that allows you to run an experiment without entering plate setup

information, if your instrument and computer are in the same network. QuickStart

requires an experiment template file.

R² value Regression coefficient calculated from the regression line in the standard curve. An

important quality value, the R^2 value indicates the closeness of fit between the standard curve regression line and the individual C_T data points from the standard reactions. A value of 1.00 indicates a perfect fit between the regression line and the

data points.

ramp The step at which the temperature changes during the instrument run. The ramp rate

is defined as °C per second. In the graphical view of the thermal profile, the ramp rate

is indicated by a diagonal line.

ramp speed Speed at which the temperature ramp occurs during the instrument run. Available

ramp speeds include fast and standard.

raw data plot A plot of raw fluorescent signal as detected through each emission filter, used to view

raw data for individual wells and at individual cycles.

reaction mix A solution that contains all components to run the PCR reaction, except for the

template (sample, standard, or control). Also called a "PCR cocktail".

reagents The PCR reaction components used to amplify the target and to detect amplification.

real-time PCR Process of collecting fluorescence data during PCR. Data from the real-time PCR are

used to calculate results for quantification experiments or to troubleshoot results for

genotyping or presence/absence experiments.

Real-time PCR Data Markup Language

(RDML)

A reporting format that is compliant with the Minimum Information for Publication for Quantitative Real Time Experiments (MIQE) guidelines.

reference sample In relative standard curve and Comparative C_T ($\Delta\Delta C_T$) experiments, the sample used

as the basis for relative quantification results. Also called the calibrator.

refSNP ID The reference SNP (refSNP) cluster ID. Generated by the Single Nucleotide

Polymorphism Database of Nucleotide Sequence Variation (dbSNP) at the National Center for Biotechnology Information (NCBI). The refSNP ID can be used to search the Applied Biosystems Store for an Applied Biosystems SNP Genotyping Assay. Also

called an rs number.

region of interest (ROI) calibration

Type of calibration in which the software maps the positions of the wells on the sample block of the instrument. The software uses the ROI calibration data to associate increases in fluorescence during a run with specific wells of the plate. A calibration image for each individual filter must be generated to account for minor differences in

the optical path.

regression coefficients

Values calculated from the regression line in standard curves, including the R² value, slope, and y-intercept. You can use the regression coefficients to evaluate the quality of

results from the standards. See also standard curve.

regression line In standard curve and relative standard curve experiments, the best-fit line from the

standard curve. Regression line formula:

 $C_T = m [log (Qty)] + b$

where m is the slope, b is the y-intercept, and Qty is the standard quantity.

See also regression coefficients.

reject well An action that the software performs during analysis to remove one or more wells

from further analysis if a specific flag is applied to the well.

relative standard curve method

An experimental method to determine relative quantities. This method compensates for target and endogenous control efficiency differences within each run. In all experiments, unknown samples and dilution series of template (such as cDNA) are amplified. Following a run, the instrument software interpolates relative quantities for each unknown sample from the appropriate dilution curve, then normalizes the data for each sample (or set of replicates) as follows: target QAvg. ÷ endogenous control QAvg.

Relative Threshold algorithm

Expression estimation algorithm (C_{RT}) which calculates a relative threshold from a fitted efficiency model for gene quantification.

relative threshold cycle (C_{RT})

The PCR cycle number for the threshold calculated from the modeled amplification efficiency profile.

replicate group A user-defined biological grouping. A replicate group may be a set of identical

reactions in an experiment.

replicates Total number of identical reactions containing identical components and identical

volumes.

reporter A fluorescent dye used to detect amplification. With TaqMan® reagents, the reporter

dye is attached to the 5' end. With SYBR® Green reagents, the reporter dye is SYBR®

Green dye. SYBR® and HRM-specific dyes are DNA-binding dyes.

reverse primer An oligonucleotide that flanks the 3' end of the amplicon. The reverse primer and the

forward primer are used together in PCR reactions to amplify the target.

reverse transcriptase An enzyme that converts RNA to cDNA.

R_n See normalized reporter (Rn).

ROX[™] dye A dye supplied by Applied Biosystems and precalibrated on the instrument. ROX dye

is used as the passive reference.

rs number See refSNP ID.

run method Definition of the reaction volume and the thermal profile for the instrument run. The

run method specifies the temperature, time, ramp, and data collection points for all

steps and stages of the instrument run.

sample The biological tissue or specimen that you are testing for a target gene.

sample definition file

A tab-delimited file (*.txt or *.csv) that contains the following setup information: well number, sample name, and custom sample properties.

Sample Library

In the software, an editable collection of sample names to use in experiments. The samples in the library contain the sample name and the sample color. The samples in the library may also contain comments about the sample.

sample/SNP assay reaction

In genotyping experiments, the combination of the sample to test and the SNP assay to perform in one PCR reaction. Each PCR reaction can contain only one sample and one SNP assay.

sample/target reaction

In quantification experiments, the combination of the sample to test and the target to detect and quantify in one PCR reaction.

security, auditing and eSignature

An optional software module that provides:

- System Security Controls user access to the software. A default Administrator user account is provided, and you can define additional user accounts and permissions.
- Auditing Tracks changes made to library items, actions performed by users, and changes to the Security and Audit settings. The software automatically audits some actions silently. You can select other items for auditing and specify the audit mode. Provides reports for audited library items, Security and Audit changes, and actions.
- Electronic Signature (eSignature) Controls whether users are permitted, prompted, or required to provide a user name and password when accessing certain software features. You can select which features are controlled and the number of signatures required for access. When authorized persons use this feature, they are creating a legally binding signature.

serial factor

In the software, a numeric value that defines the sequence of quantities in the standard curve. The serial factor and the starting quantity are used to calculate the standard quantity for each point in the standard curve. For example, if the standard curve is defined with a serial factor of 1:10 or 10×, the difference between any 2 adjacent points in the curve is 10-fold.

slope

Regression coefficient calculated from the regression line in the standard curve. The slope indicates the PCR amplification efficiency for the assay. A slope of -3.32 indicates 100% amplification efficiency.

See also amplification efficiency (EFF%) and regression line.

SNP

Single nucleotide polymorphism. The SNP can consist of a base difference or an insertion or deletion of one base.

SNP assay

Used in genotyping experiments, a PCR reaction that contains primers to amplify the SNP and two probes to detect different alleles.

SNP Assay Library

In the software, an editable collection of SNP assays to add to genotyping experiments. The SNP assays in the library contain the SNP assay name; SNP assay color; and for each allele, the allele name or base(s), reporter, quencher, and allele colors. The SNP assays in the library may also contain the assay ID and comments about the SNP assay.

stage

In the thermal profile, a group of one or more steps. Examples: PCR stage, cycling stage (also called amplification stage), and hold stage.

standard

A sample that you dilute and amplify along with unknown samples. This dilution series can contain known starting quantities of the target of interest (absolute standard curve) or it can be of known dilution factor (relative standard curve). Following the run, the software interpolates the C_T values of the unknowns to this curve, yielding either specific quantities of the target (for absolute curves) or relative quantities (for relative dilution curves).

See also standard curve.

standard curve

In standard curve and relative standard curve experiments:

- The best-fit line in a plot of the C_T values from the standard reactions plotted against standard quantities. See also regression line.
- A set of standards containing a range of known quantities. Results from the standard curve reactions are used to generate the standard curve. The standard curve is defined by the number of points in the dilution series, the number of standard replicates, the starting quantity, and the serial factor.

standard curve method Method for determining absolute target quantity in samples. With the standard curve method, the software measures amplification of the target in samples and in a standard dilution series. Data from the standard dilution series are used to generate the standard curve. Using the standard curve, the software interpolates the absolute quantity of target in the samples.

See also standard and standard curve.

standard dilution series

In standard curve and relative standard curve experiments, a set of standards containing a range of known quantities. The standard dilution series is prepared by serially diluting standards. For example, the standard stock is used to prepare the first dilution point, the first dilution point is used to prepare the second dilution point, and so on. In the software, the volumes needed to prepare a standard dilution series are calculated by the number of dilution points, the number of standard replicates, the starting quantity, the serial factor, and the standard concentration in the stock. See also standard curve.

standard quantity

In the PCR reaction, a known quantity. In standard curve experiments, the quantity of target in the standard. In the software, the units for standard quantity can be for mass, copy number, viral load, or other units for measuring the quantity of target. Standard quantity can also refer to dilution factor.

starting quantity

When defining a standard curve in the software, the highest quantity.

step

A component of the thermal profile. For each step in the thermal profile, you can set the ramp rate (ramp increment for melt curve steps), hold temperature, and hold time (duration). You can turn data collection on or off for the ramp or the hold parts of the step. For cycling stages, a step is also defined by the AutoDelta status.

SYBR® Green reagents

PCR reaction components that consist of two primers designed to amplify the target and SYBR® Green dye to facilitate detection of the PCR product.

system dye

Dye supplied by Applied Biosystems and precalibrated on the ViiA[™] 7 System. Before you use system dyes in your experiments, make sure the system dye calibration is current in the Instrument Console.

The system dyes are:

- FAMTM dye
- JOETM dye
- ROXTM dye
- NEDTM dye
- SYBR® Green dye
- TAMRATM dye
- VIC® dye

TaqMan® reagents

PCR reaction components that consist of primers designed to amplify the target and a TaqMan[®] probe designed to detect amplification of the target.

target

The nucleic acid sequence to amplify and detect.

target color

In the software, a color assigned to a target to identify the target in the plate layout and analysis plots.

Target Library

In the software, an editable collection of targets to use in experiments. Targets in the library contain the target name, reporter, quencher, and target color. The targets in the library may also contain comments about the target.

task

In the software, the type of reaction performed in the well for the target or SNP assay. Available tasks:

- Unknown
- Negative Control
- Standard (standard curve and relative standard curve experiments)
- Positive control (genotyping experiments)
- IPC (presence/absence experiments)
- Blocked IPC (presence/absence experiments)

technical replicates

Wells containing identical reaction components, including sample; important for evaluating precision.

temperature plot

In the software, a display of temperatures for the instrument cover and instrument block during the instrument run.

template

The type of nucleic acid to add to the PCR reaction.

template file

A user-created file that contains experiment setup information (experiment type, sample names, target name, and thermal conditions) to be used as a starting point for new experiment setup. Template files have an .edt extension.

thermal profile

Part of the run method that specifies the temperature, time, ramp, and data collection points for all steps and stages of the instrument run.

threshold

- In amplification plots, the level of fluorescence above the baseline and within the
 exponential growth region. For the Baseline Threshold algorithm, the threshold
 can be determined automatically (see automatic threshold) or can be set manually
 (see manual threshold).
- In presence/absence experiments, the level of fluorescence above which the software assigns a presence call.

threshold cycle (C_T)

The PCR cycle number at which the fluorescence meets the threshold in the amplification plot.

Tm

See melting temperature (T_m) .

touchscreen

Instrument display that you touch to control the instrument.

uniformity calibration

Type of calibration in which the software measures sample block uniformity. The calibration generates data that compensate for the physical effects of the Vii A^{TM} 7 System filters on data collected during an experiment.

unknown

In the software, the task for the target or SNP assay in wells that contain the sample being tested. In quantification experiments, the task for the target in wells that contain a sample with unknown target quantities. In genotyping experiments, the task for the SNP assay in wells that contain a sample with an unknown genotype. In presence/ absence experiments, the task for the target in wells that contain a sample in which the presence of the target is not known. In melt curve experiments, the task for the target in wells that contain a sample with an unknown melt curve profile.

unknown-IPC wells

In presence/absence experiments, wells that contain a sample and internal positive control (IPC).

y-intercept

In the standard curve, the value of y where the regression line crosses the y-axis. The y-intercept indicates the expected threshold cycle (C_T) for a sample with quantity equal to 1.

Glossary

Index

A	delta Rn 32
AIF 29	diluent 32
AIF 29	dye calibration 32
AIX 29	Dye Library 32
allele 29	
allelic discrimination plot 29	E
amplicon 29	efficiency correction 32
amplification 29	electrical safety 16
amplification efficiency (EFF%) 29	endogenous control 32
amplification plot 29	endpoint read 32
amplification stage 29	ergonomics, safety 17
Analysis Protocol Library 29	error 32
assay 30	experiment consumables 8
Assay ID 30	experiment document 33
assay index file 29	experiment name 33
assay information file (AIF) 30	experiment type 33
AutoDelta 30	expiration date 6
automatic baseline 30	export 33
automatic threshold 30	•
	F
В	filter 33
background calibration 30	flag 33
baseline 30	forward primer 33
baseline-corrected normalized reporter (DRn) 30	ioiward printer 33
biohazardous waste, handling 22	
biological replicate 31	G
blocked IPC 31	genotyping experiment 34
	guidelines
С	chemical safety 19
	chemical waste disposal 20
Calibration and verification consumables	chemical waste safety 21
384-well 6 96-well (0.2μL) 7	
array card 7	Н
Fast 96-well (0.1µL) 7	hazard icons. See safety symbols, on instruments 12
calibrator 31	hazard symbols. See safety symbols, on instruments
chemical safety 19	hazards. See safety
chemical waste safety 20, 21	Help system 27
comparative CT method 31	heterozygote 34
Ct algorithm 31	holding stage 34
cycle threshold 31, 32	homozygote 34
cycling stage 31	housekeeping gene 34
D	1
D	import 34
data collection 32	import of

installation	outlier 36
category 16	overvoltage category (rating) 16
instrument	
operation, safety 15	P
Instrument Console 34	
Instrument Manager 34	package label 6
internal positive control (IPC) 34	passive reference 36
inventoried assays 34	physical hazard safety 16
IPC blocking agent 34	plate layout 36
	plate setup file 36
L	positive control 37
	post-PCR read 37
laser classification 17	pre-PCR read 37
laser safety	primer mix 37
bar code scanner 17	primer/probe mix 37
requirements 17	pure dye 37
M	Q
made-to-order assays 35	quantification method 37
manual baseline 35	quantity 37
manual C T 35	quencher 37
melt curve 35	QuickStart 37
melting temperature (Tm) 35	QuickStart 3/
moving and lifting safety	
computers and monitors 15	R
instrument 15	radioactive waste, handling 21
moving parts, safety 16	ramp 38
multicomponent plot 35	ramp speed 38
1 1	raw data plot 38
N	RDML 38
N	reaction mix 38
negative control (NC) 35	reagents 38
negative control-blocked IPC wells 35	real-time PCR 38
negative control-IPC wells 35	reference sample 38
no amplification control (NAC) 35	refSNP ID 38
no template control 35	region of interest (ROI) calibration 38
nonfluorescent quencher-minor groove binder 36	regression coefficient 38
normalization calibration 36	regression coefficients 38
normalized quantity 36	0
normalized quantity mean 36	regression line 38
normalized quantity SE 36	reject well 39
normalized reporter (Rn) 36	relative standard curve method 39
NTC 35	repetitive motion, safety 17
	replicate group 39
0	replicates 39
	reporter 39
omit well 36	reverse primer 39
Ordering Information 5	reverse transcriptase 39

ROX [™] dye 39	T
run method 39	TaqMan® Reagents 9, 42
	target 42
S	target color 42
safety	Target Library 42
bar code scanner 17	task 42
before operating the instrument 15	technical replicate 42
biological hazards 22	Temperature Plot 42
chemical 19	template 42
chemical waste 20	template file 42
electrical 16	threshold 43
ergonomic 17	threshold cycle 43
guidelines 19, 20, 21	threshold cycle (CT) 43
instrument operation 15	training, information on 27
laser 17	training, morniation on 27
moving and lifting 15	U
moving parts 16	_
physical hazard 16 repetitive motion 17	ultraviolet light, safety 16
ultraviolet light 16	uniformity calibration 43
workstation 17	unknown 43
safety labels, on instruments 14	unknown-IPC wells 43
safety symbols, on instruments 12	
sample 39	W
sample definition file 40	waste disposal, guidelines 21
Sample Library 40	waste profiles, description 21
sample/SNP assay reaction 40	workstation safety 17
sample/target reaction 40	
SDSs	Υ
description 20	
obtaining 20	y-intercept 43
security and auditing 40	
serial factor 40	
slope 40	
SNP 40	
SNP assay 40	
SNP Assay Library 40	
stage 41	
standard 41	
standard curve 41	
standard curve method 41	
standard quantity 41	
starting quantity 41	
step 41	
SYBR® Green dye 41, 9	
symbols, safety 12	
system dye 42	

